
Motion planning of legged vehicles
in an unstructured environment

Craig Eldershaw
Oxford University Computing Lab

Wolfson Building, Parks Rd
Oxford, OX1 3QD, United Kingdom.

Mark Yim
XEROX Palo Alto Research Center

3333 Coyote Hill Rd
Palo Alto, CA, 94304, United States.

Abstract

A planner for statically-stable motion of a
legged robotic vehicle over an uneven terrain is pre-
sented that can plan the footplacement of individ-
ual legs for highly cluttered terrain. A method for
determining the traversability over a generic discre-
tised height map terrain is presented. Planning is
broken into two levels of refinement to reduce the
overall complexity and incorporates a number of
heuristics. The planner has successfully planned the
motion of 6 and 8 legged configurations of the XE-
ROX PARC PolyBot modular reconfigurable robot
as well as the CMU Ambler in simulation over ar-
bitrarily complex terrain. A distributed implemen-
tation of the planner has also been shown on Poly-
Bot’s distributed computational platform.

1 Introduction
The algorithm discussed in this paper deals with a legged
vehicle moving over unstructured terrain. The types of ter-
rain supported range from: relatively uncluttered environ-
ments such as predominantly smooth terrain with large ob-
stacles, through to environments where specific foot place-
ments are more rare among a sea of obstacles—like lily
pads in a pond. The inputs to the algorithm are a surface
map (giving height data at all points on the surface), a de-
scription of the robot, and the required starting and finish-
ing locations of the vehicle. The output is a step-by-step
route consisting of the vehicle’s foot locations.

With a legged robot, each leg will usually involve sev-
eral joints. When all the joints of all the legs in the vehicle
combined with the pose of the vehicle itself are considered,
then the total dimensionality of the problem can grow to be
large (e.g> 10). As complete planning algorithms are gen-
erally at least exponential in the number of degrees of free-
dom [1], then it is clearly undesirable to consider all these
degrees of freedom at once. The method proposed is to ini-
tially reduce the representation of the robot to just three di-
mensions: the location (cgx; cgy) and orientation (cg �) of
the robot’s centre of gravity (CG) through a processed map.
The second stage extends this three-dimensional route to
the detailed leg motions.

1.1 Unstructured environments
Most motion planners have dealt with structured environ-
ments with easily identified obstacles, prohibited regions of
the environment into which no portion of the vehicle must
enter. The environment that this paper is concerned with
has no regions which are prohibited per se and no distinct
obstacles. Rather, the entire environment forms an obsta-
cle in varying degrees. The environment is specified by a
two-dimensional continuous surface defined over a square
region such as is shown in Figure 1.

Figure 1: A sample unstructured environment.

The height-map shown in Figure 1 is an interesting one.
The broken nature of the ground is enough to immedi-
ately defeat any wheeled locomotion unless the radius of
the wheel/track is large relative to the size of the environ-
ment’s bumps. A legged vehicle may be able to traverse
some regions if using an open loop gait—simply thrashing
its legs enough may cause forward (albeit inefficient) mo-
tion. However this would be defeated by the “cliff” which
cannot be solved by anything short of a path planner. A
legged vehicle has had its route successfully planned across
this environment by the algorithm presented in this paper.

1.2 Target architecture
While the overall algorithm presented here can be run on
many platforms and can solve a variety of problems, it was
specifically intended for use on the PolyBot platform [2].
This robot is a modular reconfigurable robot, and so can
form many shapes. For example different configurations



will have different numbers and lengths of legs, or may
vary in the legs’ points of attachment to the body. In or-
der to plan for the locomotion of this robot, a generalised
planner is needed that can support arbitrary legged robot
configurations. The details of PolyBot will be discussed in
Section 4, but one relevant characteristic is that the plat-
form provides a large number of medium-speed processors
with limited distributed memory. The algorithm must be
capable of running on this architecture.

For a given configuration of PolyBot or an arbitrary ve-
hicle, shape and capabilities must be given to the system.
The relevant capabilities are the range and reach of each of
the legs. The shape is an inverse height map of the robot’s
under-carriage (other aspects of the robot’s body shape are
irrelevant as only the under-carriage and legs interact with
the environment).

2 Previous legged motion work
Some work connected with the issues discussed above has
previously been done, but none really address all the issues
in a fully integrated manner. There are three categories into
which most existing methods fall: Gaits for smooth ground,
broken ground foot planners, and higher level legged vehi-
cle planners.

Gaits for smooth-ground A gait is a pattern of leg move-
ments whose final state is identical to the initial one. Some
of the early contributions include [3] where wave gaits
were first formalised. [4] provides another theoretical treat-
ment of gait construction for symmetric vehicles for loco-
motion at some angle (the crab-angle). Unusually for gait
planners, this one also takes into account the overall slope
of the terrain.

Foot-planners for broken ground Probably the most
generic and widest adopted of the foot-planners capable
of negotiating rough terrain is the free-gait. Initially pro-
posed in [5], this has since been elaborated upon by other
authors, in particular [6]. Given that the vehicle is moving
along a set path, the ordering of when to move a foot is de-
termined by a stability measure. An early walking robot is
the Ambler [7]: a six-legged, self-contained robot that used
a modified free-gait[8, 9]. Operators would give the Am-
bler its overall path as a series of obstacle-free arcs which
it would trace out. The vehicle’s own control system would
adjust its height so as to keep the body level and the under-
carriage’s clearance from the ground within a given win-
dow.

Higher-level planners The planners in this category are
higher-level ones, but unlike general motion planners, these
ones have been designed for unstructured terrains with the
legged locomotion aspect in mind.

As with some of the methods described previously, [10]
assumes that a height map of the terrain to be crossed
has been acquired somehow (a scanning laser is one ob-
vious method). Each cell is classified as safe or unsafe. A
somewhat crude planner then navigates its way through the

new map ensuring that the passage between unsafe cells is
greater than the vehicle width.

In [11] a comprehensive planner (supporting both high-
and low-level planning) is presented. This system plans the
complete motion of a spider robot (four or more legs) and
a point body across a flat surface marked with valid/invalid
footholds. It finds a path that the robot’s body may follow
that has valid footholds. It then constructs a sequence of
foot-steps.

2.1 Shortcomings
It can be seen from the above review of existing planners
that several deficiencies exist. Perhaps the most significant
of these (as it effects all the planners) is a failure to sup-
port the reach of different legs. Other problems which ef-
fect some of the surveyed planners include: assuming the
ground to be smooth; supporting only a fixed number of
legs or a specific configuration; having overly constrained
or completely unconstrained leg ranges; and lacking inte-
gration between high- and low-level planners.

A distinction is made from here-on between reach and
range of a leg. Range is the region of the xy plane
into which the foot can feasibly be placed (ie. constraints
on how far forward/backwards/left/right the foot can go).
Reach is how far down the foot can go (this need not be
uniform across the entire range).

Concerning reach of legs: those papers describing the
above planners that do consider it at all, blithely state that
the height of the foot placement can be simply determined
by the input height map. This is indeed true: having de-
termined the (xi; yi) of the ith foot, then the height of its
placement simply becomes zi = f(xi; yi) where f is the
two dimensional height map. However this ignores the im-
portant fact that the height of the environment combined
with the reach of the leg should in fact form a part of the
feasibility test.

An example of this was shown in Figure 1. Even if
the ground was smoothed out (ie. high-frequency noise re-
moved), then all of the planners discussed in this section
would fail by hitting the cliff. However a closer looks
shows that nothing really distinguishes the cliff from the
smaller bumps—except in scale. Further consideration
shows that the reason the cliff will withstand a direct frontal
assault whereas smaller terrain features succumb is because
the legs of the robot have sufficient reach to step up onto (or
even step over) smaller features, but not span the full height
of the cliff.

That is, there is a feasible stable stance at the base of
the cliff (with all feet placed at the base) and another at the
top of the cliff (with all feet on the high-ground). Due to
the limitation of reach of the legs, there is no stable stance
for the robot with some legs at the base and some on the
high-ground. If the entire raised region is treated as an ob-
stacle, then that high ground could never be reached, even
though a valid route exists via the sides.



The INRIA planner[11] which is the most interesting
in many regards has the very significant limitation that it
assumes all the legs have the same leg-range: that of a cir-
cle inscribed about the robot’s body. Unfortunately this as-
sumption is fundamental to the way in which the algorithm
works,

In this paper, we assume that a perception and control
system similar to that of the Ambler exists.

3 Splitting the planning work
To reduce the complexity of the planning, the movement
plan for the robot is decomposed into two stages. The first
of these simply finds the overall path the robot will take—
the path the robot’s CG will follow. This path will avoid
crossing cliffs or ground which is broken beyond traver-
sal, while guaranteeing that a stable set of foot placements
exists. The second stage searches to find a set of valid
foot movements which can allow the robot to execute this
path. It should be noted that this decoupling does not rely
upon the assumption (made by many other authors) that the
second stage of planning is trivial due to the terrain being
smooth.

3.1 High level path: PRM/CGspace
By initially ignoring the details of the legs, the problem’s
dimensionality is reduced to three: (cg x; cgy; cg�). The
roll and pitch of the robot is assumed to be zero, and deci-
sions about the final height of the robot are relegated to the
lower-level planner. The (cg x; cgy; cg�) are discretised to
form CGspace, a three-dimensional bitmap. The discreti-
sation is such that the resolution in the cg x and cgy axes
matches the size of a the smallest foot print from an indi-
vidual leg. This allows a coarse resolution to speed com-
putation and minimise memory requirements while not al-
lowing a foot to fall in an unrepresented hole (one that is
smaller than the resolution of the cell). The cg � axis may be
discretised to any required resolution, but typically either
one (ie. no rotation allowed) or at least eight (non-trivial
lower values would require the vehicle to turn through an
infeasibly large angle in a single movement).

This stage of the algorithm uses a version of the prob-
abilistic road-map planner (PRM). The PRM planner (see
[12]) is a graph-based one. It fundamentally works by scat-
tering points uniformly throughout the CGspace and apply-
ing a cheap local planner to connect those points which are
near neighbours. An undirected graph is built up: one node
for each of the problem’s start and finish points and one for
each randomly added point; if the local planner success-
fully connects two of these points, then an edge is added
in the graph connecting them. Local paths between pairs
of points are not generally retained in detail due to storage
restrictions, but they can be recreated cheaply later if re-
quired. When a graph search from the start node through
to the finish node succeeds, then the solution may be found
by re-calculating the path for each relevant edge and con-
catenating them to form the complete path.

The local planner employed in this case is an A? search
of the CGspace bitmap. Each CGcell (a cell within this
map) is marked as valid if it satisfies a set of conditions, or
invalid if it fails any of them. These conditions ensure that
some feasible, collision-free leg configuration exists which
will allow the vehicle to stand in a stable manner with its
CG in that position and orientation.

Some foot positions are infeasible in their own right.
This is decided by the slope of the terrain at that point.
Part of the robot’s description is the maximum inclination
at which its feet can maintain traction. In theory, walk-
ing on slopes greater than this angle may be possible if an
opposing slope is nearby which the vehicle can brace it-
self against (in climbers parlance “chimneying”). However
this possibility would require the legs to possess significant
lateral strength and would give rise to some rather compli-
cated force-based calculations; so this possibility is ignored
in this paper. The quality of a foot placement cell could
incorporate properties other than slope [9] for example sta-
bility (whether sand or loose rock is detected by sensors),
but these are not considered here.

In the target application, statically stable motion is de-
sired. To ensure this, one of the necessary CGcell condi-
tions is that a feasible foot position be found in each of
the four quadrants centred about the vehicle’s CG. See Fig-
ure 2 below for an example. Each of these foot positions
must be chosen to be within some leg’s region of motion
(within reach). The reader will recognise that this is an
overly strong constraint: stability requires only three points
of contact. However as well as being faster to calculate,
using the “quadrants method” allows a more general state-
ment about stability (any foot in that quadrant is sufficient
rather than a specific combination of three feet).

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

Figure 2: The robot’s range of motion is broken into quad-
rants. At least one valid position (shown as a
cross) must be found in each. Filled squares are
infeasible foot locations.

The final condition tested is based upon each leg’s ver-
tical reach. The purpose of this is two-fold: one aim is
to ensure that the legs are not placed too far apart ver-



tically (eg. two feet on top of a cliff, two at the cliff’s
base); the other is to ensure that the legs are long enough
to hold the body off the ground (eg. feet straddling a high
narrow ridge). The minimum height the robot must be at
is MinHeight = maxi;j [land(i; j) + robot(i; j)] where i

and j are coordinates in the vehicle’s frame of reference;
land (i; j) is the height of the environment at (i; j); and
robot(i; j) gives depth of the vehicle’s under-carriage be-
low the vehicle (relative to an arbitrary horizontal zero
plane running through the vehicle, from which all leg and
under-carriage distances are measured) for the current CG-
cell. Therefore it is required that for each of the four foot
positions chosen, the height at that point plus the reach of
the relevant leg (below the vehicle’s zero plane) is greater
than MinHeight . If not, then the robot’s under-carriage
would be in contact with the ground.

Figure 3: A computer generated test environment.

With these test conditions now defined, fragments of
the CGspace can be materialised upon demand. Figure 3
shows a sample computer-generated terrain. The nine sharp
peaks are clearly too steep for useful traction, so too are
parts of the slope up to the central plateau. Those cells
where feet are unable to obtain traction are shown as small
circles in Figure 4. Black cells correspond to invalid CG-
cells for a particular eight-legged spider. It should be noted
that CGmaps are dependent upon not just the environment,
but also the particular vehicle. This can be seen by con-
trasting Figure 4 with Figure 6, both of which are the same
environment, but have been calculated for different vehi-
cles. It can be seen that it is quite possible to have invalid
foot positions which are not invalid CGcells as the vehicle
can “straddle” these places. Figure 6 shows this clearly: the
invalid foot region in the upper right has no corresponding
invalid CGcells at all. The contrary is also true: the “black
border” which can be seen around large regions of invalid
foot positions occurs because the vehicle can find no sup-
port on one side.

The A? search is performed on a block of CGspace
slightly larger in the cgx and cgy directions than the min-
imum block defined by the points to be connected. The
block searched always contains the full cg � dimension. The
search is based upon 6-adjacency rather than 26-adjacency
(ie. just single unit changes in at most one of the search
axes at each movement). The search is permitted to wrap

at the 2� boundary in the cg � dimension.

To reduce the number of calls to the A? search, the
PRM method was modified to generate only a series of
trees (as distinct from more general graphs). Rather than
attempt to join each newly selected point to all neighbours
which are sufficiently close, such attempts are only per-
formed if the new point is not already connected (possibly
indirectly) to the existing point in question. This greatly re-
duces the number of planner calls (O(n) rather thanO(n2))
and does not effect the graph’s overall connectivity. The
negative aspect of this is that the routes generated by the
final graph search may take a considerably less direct route
than would have occurred if the algorithm had attempted to
connect all near-neighbours points.

To avoid all graph searches and reduce the number of
distance calculations (which are used to determine if an
attempt should be made to connect two points), each dis-
tinct tree is stored as a separate linked list. Once a path
is found connecting a new point to one tree, it is added to
that list and never compared against others in that list. If a
new point is successfully connected to two separate trees,
then those lists are concatenated. When the list containing
the starting point and the list containing the finish point are
eventually merged, then a solution is found.

Figure 4: The footmap and CGmap (at CG� = 0) of
the environment shown in Figure 3 for a eight-
legged spider. Invalid foot positions are circles,
invalid CGcells are black squares.

3.2 Foot-level planner
The result of the high-level planner is a contiguous path of
feasible CGcells. These describe the desired motion of the
entire robot from the given start point to the given finish
point. The second part of the algorithm finds a set of leg
motions which will cause the vehicle to move along this
given path from one CG position to the next.



Since (as stated previously) the desired motion is a stat-
ically stable one, all the conditions defined in the previous
section for CGcell validity must still be enforced. The foot
planning is fundamentally a recursive depth first search of
a decision tree. At each node of the tree a decision is made
to either:

� Move the vehicle’s CG from the current CGcell to
the next. That is, keep all the feet on the ground
where they are, but adjust the leg joints so that the
vehicle “leans forward” in the direction of motion.
Since the CG is three-dimensional, then the “for-
ward” may in fact be a rotation of the vehicle’s body.

� Keep the CG where it is, but move one of the feet.
This can take two forms: it can just pick up the foot
(and keep it up) or it can move the foot to a new lo-
cation. There are three reasons why this would be
done:

– because the next CG movement will bring the
foot out of range

– to avoid instability in the next CG move (a foot
is about to leave a quadrant)

– to free-up another foot which needs to move,
but is currently unable to move on stability
grounds.

It should be noted that (in general) at any stage there
are many ways of choosing to move a leg. Firstly there is
the choice of which leg to move, and then for any given
leg there will generally be many different places to put it.
Many of these can be ruled out due to: one foot stepping
on another; the vehicle becoming unstable; a position be-
ing out of reach for that leg; or the slope being too great
for traction. However that still often leaves a large number
of possibilities. So the fan-out for this tree (the number of
children of each node in the tree) can typically be of the
order 10–100. The depth of the tree is at least as long as
the number of CGcells in the CG path found earlier. That
can only be achieved if no actual foot movements were
necessary—which is not true in practice—so the tree can
easily have a depth of hundreds. Given these (admittedly
vague) figures, the number of nodes in the search tree can
easily reach 1010. In more complex problems the number
is correspondingly higher (of the order 10100–101000).

Given the size of the tree, a brute-force search is quite
infeasible. The algorithm uses a series of heuristic tech-
niques to guide the search. This works by prioritising each
move at each point in the tree. A “free foot” is one which is
not currently (and not immediately about to become) crit-
ical for stability. In descending order of precedence, these
moves are:

1. Move the CG forward while keeping feet in place.

2. If moving the CG forward is feasible for each of the
legs individually (ie. all remain in range), but would
cause instability, then attempt to move a free foot into
the deficient quadrant.

3. Move any free foot that is at the limit of its range and
about to become infeasible to a new location.

4. Raise up (and keep up) any free foot that is at the
limit of its range and is about to become infeasible,
but has nowhere feasible to go.

5. If a foot that isn’t free is about to become infeasible,
move a free foot into the relevant quadrant to “free”
the ailing one.

In addition to the above ordering of moves, when mov-
ing a foot (for any of 2, 3 or 5 above) then the possible new
placements are also ordered. The ordering is such that if
motion of the vehicle’s CG were to continue in its current
direction, then the best new foot placement would be one
that remains within the feasible region of that foot for as
many CG movements as possible.

One nice aspect of using a heuristic ordering to the
searching of the tree is that even if the heuristically inspired
“suggestions” are completely wrong, then eventually the
less favoured (but correct) moves will be tried. So the over-
all completeness of the foot-level planner is not affected by
the heuristics, but the average search time is reduced by
many orders of magnitude.

3.3 From low back to high
Unfortunately the CG path returned by the high-level plan-
ner may not actually be statically traversable. Each valid
cell in the path guarantees that there is a stable configura-
tion allowing the vehicle to stand there. However it does
not guarantee that there is a means of moving from any
given stance in one CG position to a stable stance in the
next. It is possible that only a dynamic move (one where
stability is temporarily sacrificed) can achieve. It is also
possible for two neighbouring CGcells to have a stable and
collision-free stance but each cell may have heights too far
from each other for the legs to reach and make the transi-
tion between cells.

These situations cannot be detected in the high-level
planner. To do so would require all the knowledge (and
work) that was deliberately separated out into the low-level
planner. So it is the responsibility of the low-level planner
to heuristically detect these and pass this information back
to the high-level planner. Heuristics are required since for
the low-level planner to do a complete test would be infea-
sible, as it would require exhaustively planning all possible
steps from the start of the path to this point. The high-level
planner can mark the offending CGcell as invalid and re-
sume the planning. In many cases the low-level planning
done so far can be usefully re-used as the newly corrected
CGpath may only contain minor deviations from the pre-
vious one. This heuristic time-out and passing back of the
information has not yet been implemented, however in the
authors’ experience, these situations have not occurred fre-
quently.



4 Implementation
The overall algorithm presented here is quite general and so
can be run on many computational platforms for use with
vehicles of many different shapes and capabilities. How-
ever it was built for a specific problem. The plan generated
by the algorithm is intended to be used by PolyBot. Poly-
Bot [2] is a modular reconfigurable robot designed and built
at XEROX PARC. It is capable of reconfiguring into many
different topological structures—including legged vehicles
(which is when this algorithm is to be employed). Also
influencing the design was the eventual desire that the al-
gorithm be run on the PolyBot’s own CPU’s.

4.1 Architecture
There are several significant aspects of the PolyBot’s hard-
ware system which should be considered: the memory size
and the distributed nature of the system. PolyBot consists
of a series of modules (currently twenty-four, but antici-
pated soon to be several hundred); each is identical and
contains: a single Motorola 555 CPU (see [13]), 300kb of
programmable flash and 500kb of RAM. The packet-based
communications between modules is over a shared serial
bus with a maximum total throughput of about 500kbps.

4.2 Distributed processing—the CG planner
While a reasonable amount of total computation (52K
Dhrystones (v2.1) [14] times the number of modules) and
memory (500kb times the number of modules) exists, it is
fragmented into fairly small portions connected by a rela-
tively slow communications link. This is one of the signif-
icant reasons for maintaining the PRM layer of the algo-
rithm. For use on a large compute server, the A? searching
of the CGspace is quite cheap. On such a platform, the
PRM step could reasonably be replaced by a single call to
the A? between the starting and finishing CGcells.

While the PRM layer is not really assisting in perfor-
mance on simpler problems, on the target architecture the
use of it has quite a different purpose. Each of the PRM’s
calls to the local planner are fairly independent. This means
that the A? searches that are to be performed between dif-
ferent pairs of nearby cells can be distributed and run simul-
taneously on the PolyBot’s many processors. This allows
an easy way of parallelising part of the computation.

More pressing than computational power though, is
memory. The complete materialised CGspace for larger
problems involving rotation requires a lot of memory—
in general far more than any one module could store.
However the authors’ implementation never uses the en-
tire CGspace at once—only a small region containing the
two near-by cells which are to be joined. This means that
at any given time, each processor need only store a small
fragment of the whole, thus solving the memory problems.

Repeatedly materialising the same fragment of CG-
space is expensive and due to the communications system
available, passing large sections of calculated CGspace be-
tween different modules would be prohibitive. The solution

is to ensure that each processor is assigned to process A?

search queries in only one region of the CGspace. The re-
gions being sized so as to completely fit in the memory of
a single module.

Using this technique, the planner was implemented on
5 PolyBot modules with a simulated environment passed
to the modules from a host PC. Five modules roughly de-
creased the planning time by half versus one module for the
case where the environment was small enough to fit in one
module.

5 Examples
As mentioned in Section 2, one well known legged robot
which did do step by step planning was the Ambler [7].
This is a six legged robot with two sets of stacked orthog-
onal legs, making it capable of a unique circular gait. The
leg’s range of motion is shown in Figure 5.

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

Feet 1, 2 & 3

Feet 4, 5 & 6

Figure 5: The ranges of motion of the Ambler’s six legs.

The Ambler’s configuration is well suited for this algo-
rithm. Figure 6 shows the outcome of running the algo-
rithm. Once again, invalid CGcells are marked with black
blocks, and small circles indicate invalid foot regions. The
considerably longer reach of the Ambler versus that of the
spider robot (used in Figure 4) can be clearly seen. For ex-
ample the invalid foot region in the top right is completely
traversable by the Ambler (no black CGcells).

The continuous black line shows the path found by the
high-level planner for the Ambler’s CG to take. Snapshots
of the robot are shown at various stages along the route.
The crosses are the “footprints” left by the robot as it exe-
cuted the full path.

6 Conclusion and Future work
This paper has presented a system which is unique in that
it performs both high-level planning and step by step plan-
ning in an unstructured environment taking into account leg
reachable workspaces, terrain heights and the exact shape
of the robot. It is also noteworthy for being a generalised
planner supporting any legged vehicle configuration. Liter-
ature concerning unstructured environments is rare due to
the difficulty of precisely defining the obstacles—this as-
pect has been addressed by the authors. Most legged vehi-
cles use simple gaits for locomotion and rely upon mechan-



ical flexibility to overcome minor obstacles, this algorithm
uses high level planning to avoid unsurmountable obsta-
cles, and careful foot-placement to navigate through other
regions.

While the C-space of a legged vehicle is usually very
large (and so expensive to create and search), this paper
explains how to decouple the problem into trajectory plan-
ning and foot planning, thus reducing the dimensionality.
This does introduce problems in some environments as dis-
cussed in Section 3.3, however the authors have proposed
one solution, and intend to investigate this further. Even
with this decomposition, the search space is still infeasi-
bly large to search completely, and so a heuristic strategy is
proposed.

It is hoped to have the actual robot with 100+ modules
planning and executing its own route in 2001.

Acknowledgements: This work is supported in part
from DARPA contract MDA972-98-C-0009. Also, the
work of Kimon Roufas and David Duff in building the
PolyBot modules (version G2) and Ying Zhang in devel-
oping the communications software for these modules is
deeply appreciated.

Figure 6: The final path taken by the Ambler robot.

References
[1] J. F. Canny, The complexity of robot motion planning. ACM

Doctoral Dissertation Award: 1987, London: The MIT
Press, 1988.

[2] M. Yim, D. G. Duff, and K. D. Roufas, “PolyBot: a
modular reconfigurable robot,” in International Conference
on Robotics and Automation, (San Francisco, California,
USA), IEEE, Apr. 2000. In press.

[3] R. B. McGhee and S.-S. Sun, “On the problem of selecting
a gait for a legged vehicle,” in Transactions of the VI IFAC
Symposium, (Erevan), pp. 53–62, 1974.

[4] V. Kumar and K. J. Waldron, “Gait anakysis for walking ma-
chines for omnidirectional locomotion on uneven terrain,”
in Seventh Symposium on Theory and Practice of Robots
and Manipulators (A. Morecki, G. Bianchi, and K. Kedzior,
eds.), pp. 46–67, 1988.

[5] E. I. Kugushev and V. S. Jaroshevskij, “Problems of select-
ing a gait for an integrated locomotion robot,” in Proceed-
ings of the Fourth International Joint Conference on Artifi-
cial Intelligence, vol. 2, (Tbilisi, Georgia, USSR), pp. 789–
793, Sept. 1975.

[6] R. B. McGhee and G. I. Iswandhi, “Adaptive locomotion of
a multilegged robot over rough terrain,” Transaction on sys-
tems, man and cybernetics, vol. 9, Apr. 1979.

[7] J. Bares, M. Hebert, T. Kanade, E. Krotkov, T. Mitchell,
R. Simmons, and W. R. L. Whittaker, “Ambler: An au-

tonomous rover for planetary exploration,” IEEE Computer,
vol. 22, pp. 18–26, June 1989.

[8] D. Wettergreen, H. Thomas, and C. Thorpe, “Planning
strategies for the ambler walking robot,” in International
Conference on Systems Engineering, IEEE, 1990.

[9] E. Krotkov and R. Simmons, “Perception, planning, and
control for autonomous walking with the ambler planetary
rover,” International Journal of Robotics Research, vol. 15,
pp. 155–180, April 1996.

[10] J. L. Oliver and F. Ozguner, “A navigation algorithm for an
intelligent vehicle with a laser rangefinder,” in International
Conference on Robotics and Automation, (San Francisco,
California, USA), pp. 1145–1150, IEEE, Apr. 1986.

[11] J.-D. Boissonnat, O. Devillers, L. Donati, and F. P.
Preparata, “Motion planning for spider robots,” in Inter-
national Conference on Robotics and Automation, (Nice,
France), pp. 2321–2326, IEEE, May 1992.

[12] L. Kavraki and J.-C. Latombe, “Randomized preprocessing
of configuration space for fast path planning,” in Interna-
tional Conference on Robotics and Automation, vol. 3, (San
Diego, California, USA), pp. 2138–2145, IEEE, May 1994.

[13] Motorola Semiconductor, Technical data sheet for MPC555,
1988.

[14] R. P. Weicker, “Dhrystone benchmark: rationale for ver-
sion 2 and measurement rules,” SIGPLAN Notices, vol. 23,
pp. 49–62, Aug. 1988.


