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Abstract

Reconfigurable modular robots have the ability to use different gaits and configurations to perform various tasks. A rolling gait
is the fastest currently implemented gait available for traversal over level ground and shows dramatic improvements inefficiency.
In this work, we analyze and implement a sensor-based feedback controller to achieve dynamic rolling for a loop robot. The
robot senses its position relative to the ground and changesits shape as it rolls. This shape is such that its center of gravity is
maintained to be in front of its contact point with the ground, so in effect the robot is continuously falling and thus accelerates
forward. Using simulation and experimental results, we show how the desired shape can be varied to achieve higher terminal
velocities. The highest velocity achieved in this work is 26module lengths per second (1.6m/s) which is believed to be the fastest
gait yet implemented for an untethered modular robot. One ofthe major findings is that more elongated shapes achieve higher
terminal velocities than rounder shapes. We demonstrate that this trend holds going up as well as down inclines. We show that
rounder shapes have lower specific resistance and are thus more energy efficient. The control scheme is scalable to an arbitrary
number of modules, shown here using 8 to 14 modules.

I. I NTRODUCTION

Locomotion is one of the most basic functions of mobile robots. Robotics researchers have demonstrated a wide variety of
locomotion modes, including legged, wheeled, snake-like and even amoeba-like locomotion. Not every locomotion mode is
suitable for all tasks. For example, a car like vehicle may bewell suited for travelling over roads, but would not be suitable
for climbing through a rubble pile doing search and rescue. Asnake-like robot maybe well suited for climbing through tightly
constrained environments, but is probably very inefficientgoing long distances.

Reconfigurable modular robots have been used as a platform tostudy different locomotion modes [24] and indeed, hundreds
of locomotion modes have been demonstrated [1], [2], [3], [10], [20], [21], [22], [23]. The choice of configuration is usually
task specific. One of the advantages of self-reconfigurable robots is the ability to reconfigure as the needs and environments
change. For example, a self-reconfigurable robot in a searchand rescue application might approach a scene using a fast and
efficient rolling gait, reconfigure into a snake to squeeze through tight spaces and then reconfigure into a form with many
limbs to move rubble or protect a victim. This paper will focus on a rolling loop configuration using a modular reconfigurable
robot called CKBOT [16].

In the loop configuration shown in Figure 1(a), the motion of the robot is like that of a tank tread. On flat terrain this gait is
currently considered to be the most efficient as well as the fastest configuration under some conditions [20] (this has notbeen
proven for the general case though). It has been implementedon various robots in [10], [18], [20]. In most implementations,
the motion of these gaits was not dynamic,i.e. there was no inertial component to the motion. Rather the motions were purely
kinematic; changes in geometry cause locomotion, stopping the changes in geometry also stop locomotion. There is a limit to
the rate at which a kinematic rolling track can accelerate. Accelerating too fast causes the loop to undulate in place or worse
roll backwards as shown in Figure 1(c).

In [9], Kamimura et al. implemented anopen-loopdynamic rolling gait using CPGs where the weights for the CPGs were
determined using simulation. A deformable robot was actuated by SMA coils in [18] to manipulate the shape into stable and
unstable deformations for crawling and jumping. In [14], Matsuda and Murata proposed a robot whose links formed a closed
chain where the actuators control the stiffness of a spring in each joints. This allows them to adjust the stiffness in each
joint and drive the robot forward. In [17], a dynamic simulator was used to generate and simulate a dynamic rolling gait.
Feedback was through accelerometers in the robot and an average velocity of about 1 m/s was reported. However, this gait
was not implemented on an actual robot and no analytical insight was provided. A dynamic rolling gait was implemented on
a Icosahedral modular robot called the Tetrobot in simulation in [13]. However, no implementation details were given for this
work.

In this work, we present a new implementation of the rolling loop using sensor-based feedback. Our work differs from
previous work in the use of sensory feedback, development ofa simplified dynamic model that provides considerable insight
for development of control and implementation on a prototype robot. Sensory feedback dramatically improves the reliability of
this gait (as compared to open loop implementations). In addition, this work presents the fastest gait yet reported by a modular
robot.

The rolling loop is formed by a closed kinematic chain with many degrees of freedom. A complete model with all the joint
degrees of freedom and the closed chain constraint for an arbitrary shape could be built for our robot, but the equations of



(a) Kinematic Rolling (b) Dynamic Rolling: Ideal Case(c) Dynamic Rolling: Loop turns
back on itself

Fig. 1. Different modes of rolling.

motion are very complex and would not provide much insight into the dynamics of the system. Further, with so many actuators
on the robot, the dimension of the space of possible inputs makes designing controllers non-trivial. Our approach is to simplify
the model for the system by restricting the type of controller to track an appropriate shape attouchdown, the contact of a
module with the ground.

The resulting relatively simple controller gives us betterinsights into the dynamics of the system. Another benefit of this
implementation is that the method scales to any number of modules or joints in a loop, within actuator limitations. In addition
to simplifying the control algorithm, our approach also offers better insight into the dynamics of the system.

This paper is structured as follows. In Section II, we present the robot used in this work. In Section III, we introduce
the main idea behinddynamic rollingand compare it withkinematic rolling. In Section IV we present a four-bar like model
for the robot that simplifies the analysis of dynamic rolling. In Section V, we propose the framework used for control. The
experimental setup is described in Section VI. In Section VII, we present theoretical results derived using this model and
experimental results with 10 to 14 module rolling module loops. In Sections VIII and IX, we follow up with a discussion on
insight gained from the results and possible future applications.

II. T HE ROBOT

The robot system used in this work is a modular system called CKBOT and is shown in Figure 2. An individual module
is shown in Figure 3. Each module is made up of a hobby servo that drives a rotary degree of freedom, a frame made of
acrylonitrile-butadiene-styrene (ABS) plastic, a microprocessor and a touch sensor. A summary of the hardware is shown in
Table I.

The one degree of freedom has a range of +90 to -90 degrees. When at 0 degrees, the module closely resembles a cube 60
mm on a side. As the degree of freedom moves away from zero, therounded edge of the frame is exposed as in Figure 3. As
a loop rolls, this rounded edge will make impact the ground. This rounded edge smooths rolling to some extent, though the
top face of the module still poses a corner that impacts the ground.

Each module also has eight identical electrical connectionports, seven around four faces of the robot and one internal.
These ports are used to electrically connect modules together as well as add extra computation, sensors or batteries. Power
and communications are passed from module to module. Communication to each module is through a global bus based on the
RoboticsBus protocol [7] which is built on the CANbus standard (Controller Area Network).



Property Value
Mass (per module) 138(g)
Size (per module) W60xL60xH60(mm)

Batteries Lithium Polymer 7.4V
MCU PIC18f2580
Servo Airtronics 94359
Torque 1.4Nm

Reconfiguration Manual

TABLE I

TECHNICAL SPECIFICATIONS FOR ACKBOT MODULE.

Fig. 2. Ten CKBOT modules forming a football shape.

While each module is capable of carrying a battery, typically five lithium polymer battery packs were attached to a full loop
during testing which would give several hours of run time. Iflong life performance were required, more batteries (up to 20)
could be added to the system.

To form a loop, each module is attached end-to-end using screws and the two ends are then screwed together to form a
loop. It is possible to form loops in other ways. For example,instead of daisy-chaining head to tail each module: (head-
tail)(head-tail)(head-tail) the modules could be attached head-head: (head-tail)(tail-head)(head-tail). This isthe configuration
that Superbot [2] and MTRAN [10] use. When tested with CKBOT, this configuration does not do as well in taking advantage
of the rounded structure of the modules and thus the motion isnot as smooth. As a result this was likely to be less efficient
and was not tested extensively.

A separate microcontroller board, thebrain, serves as a centralized controller. It plugs into one of theports on the robot and
provides control position commands for all modules. The touch sensors are infra-red proximity sensors that measure reflectance
as an indication of distance to the ground. These touch sensors plug inside the module as shown in Figure 3. Sensors use
empirically derived thresholds for different surfaces to determine whether the module they are plugged into is touching down
or not. The touch sensors send process messages to the brain upon a touchdown event. The brain then calculates the angles
required for each module to track the desired shape and sendsthese commands to the microcontroller on each module.

Fig. 3. An individual CKBOT module.



60 60 60 0 0 60 60 60 0 0
60 60 0 0 60 60 60 0 0 60
60 0 0 60 60 60 0 0 60 60
0 0 60 60 60 0 0 60 60 60
0 60 60 60 0 0 60 60 60 0

TABLE II

GAIT TABLE FOR KINEMATIC GAIT (ALL ANGLES ARE SPECIFIED IN DEGREES).

III. K INEMATIC VS . DYNAMIC ROLLING

Statically stable locomotion is a term that is often used to characterize robot gaits. At any moment in a statically stable
gait, the robot could stop moving its joints and the robot would not fall over. The projection of the center of gravity is always
maintained to be within the convex hull of the ground contactpoints. Dynamic locomotion characterizes robot gaits in which
the inertia of the robot plays an important role in the locomotion. In general, gaits (which are assumed to be stable) are either
statically stable or dynamically stable, but not both. Traditionally static and dynamic stability refers to legged robot gaits.
When applied to rolling gaits things become less clear. An automobile has its center of gravity always within the convex hull
of its four tires. If it moves slow enough, the inertia of the vehicle can be ignored and it might be said that the vehicle is
statically stable. However, if it gained any significant speed, the inertia cannot be ignored and the vehicle might be said to be
dynamically stable. The line delineating the two conditions is not clear. In the case of loop robots, we refer to the gaitsin
which inertia plays no role as kinematic rolling. Here, the equations of motion can be determined directly from the geometry
(no mass terms).

A. Kinematic Rolling

A kinematic rolling gait is implemented by repeatedly moving the shape of the loop such that the long axis rotates. This
motion is similar to the motion of a tank tread. One rotation of the long axis corresponds to one cycle of the gait. The
frequency of rotation is directly proportional to the speed, i.e. stopping the tread causes the whole robot to stop. For a closed
loop robot like the one used in this work, one typical loop shape has two lines of modules one on top of the other attached
by an intermediate set of modules forming arcs as shown in Figure 1(a). A kinematic roll for this configuration is executed
by smoothly interpolating the joint angle of each module to the joint angle of the neighboring one in the loop. This type of
motion can be easily represented using agait table [20].

An example gait table for a kinematic rolling gait for a 10 module loop robot is shown in Table II. The neighboring columns
of the table correspond to neighboring modules in the loop. The rows of the table correspond to steps (or time). The elements
of the table are the joint angles for the corresponding module at the corresponding time. Note that there are only five rowsin
the gait table since the gait cycles back to the first row afterthe fifth.

One thing to note is that between rows only four modules change joint angles. This table can be scaled to larger numbers
of modules by increasing the number of modules with 0 degrees(the straight parts). As the numbers get larger there would
still be only four modules which change joint angles.

B. Dynamic Rolling

Unlike the kinematic gait a dynamic gait continues to move the robot even after all joints have stopped moving,i.e. a
dynamic gait utilizes momentum. To create a dynamic rollingmotion for a modular loop robot, one approach is to move the
center of mass beyond the pivot point for the module currently on the ground as shown in Figure 1(b) and Figure 5. This
results in a moment contribution from the weight of the robotin the direction of rolling and the robot accelerates in that
direction.

The motion of the robot can be separated into two phases: (1) ashape change where the robot changes shape to the new
desired shape that increases the distance between the center of mass and the ground contact point and (2) a falling phase
where the robot’s shape is frozen and the robot behaves essentially like an inverted pendulum pivoting about the contactpoint
(bringing the center of mass closer to the ground contact point). The start of the first phase occurs as soon as a new touchdown
is detected. This paper will show that the first phase resultsin a slight deceleration and then an acceleration while in the second
phase the robot is continuously accelerating towards the next touchdown.

This motion is clearly not statically stable as the center ofgravity is never within the convex hull of the ground contact
points. One could say the robot is continuously falling. Since the robot is shaped like a loop, as long as it falls in the plane
formed by the loop, it is never in a position where it cannot move (i.e. the way a legged robot may catastrophically fail if it
falls over).

One way to view this method of control is that of a modified gaitcontrol table where the speed of motion between rows of
a gait table is based on sensor feedback.



Fig. 4. Four-bar model used for analysis.

Fig. 5. Different phases of the rolling motion illustratingthe effect of shape change at touchdown and subsequent falling motion of the robot.

IV. A NALYTICAL MODEL

We make a simplifying assumption that serves to reduce the complexity of the dynamic analysis for the robot. We choose
a ”backbone” curve [4] to which we map the modules. We restrict this backbone curve to a shape that is formed by joining
two equal arcs of a circle whose sector subtends an angle lessthan 180 degrees. This results in a shape which resembles an
American football as shown in Figure 2. In the limit, as the two arcs approach 180, the shape reduces to a circle. The modules
of the robot approximate this backbone curve by fitting the position of the joints to lie on the arcs.

The shape can be defined using a single parameterθa, the angle between the modules at the top and bottom apex of the shape
(Figure 4). All the other joint angles are equal to each other(to sayθs) and can be derived in terms ofθa from Equation 1

2θa + (n − 2)θs = 2π, (1)

wheren is the number of modules in the loop.
It will be clear from our choice of control strategy in Section V that local shape changes of the robot will involve only four

modules moving at a time just as the kinematic gaits in Section III-A. We can thus simplify the model of the loop to that of
a floating four-bar mechanism hinged at the contact point. Inthis model the four moving modules represent the four joints.
The two longer arcs (nodes 2 through 5 and nodes 7 through 10) represent two of the links of the four-bar while the other
two links (comprising node 1 and 6) are made up of single modules. Reducing the model in this manner to the one degree
of freedom four bar linkage means that the shape of the robot can be parameterized using a single parameter,θa (or similarly
θs). This framework is shown in Figure 4.

The equations of motion for this simplified version of the robot are derived using a standard method by first defining the
Lagrangian for the system and deriving Lagrange’s equations. The generalized coordinates used in the analysis are the apex
angleθa and the global angle made by the robot with the groundθg (Figure 4). Each module is considered to be a thin rod of
length 0.06 m with mass 0.138 kg (from Table I). The resultantequation for the evolution ofθg can be expressed in the form:

θ̈g = f1(θa, θg)mg + f2(θa, θg)τ. (2)

wherem is the mass of a module andg is gravity. Note that the first term on the right hand side essentially collects the terms
that are linear inmg while the second term on the right hand side collects all the terms linear inτ . f1 andf2 are functions



Fig. 6. (a) Joint angle for Module 1 (b) Joint angle for Module2 (c) Joint angle for Module 3 (d) Angular velocity of the robot over time interval corresponding
to three consecutive module touchdowns.

of the two anglesθa andθg and constant parameters including the length of the modulel, its massm and the mass moment
of inertia (I0) of the module about its rotational degree of freedom.f1 andf2 are presented in detail in the Appendix.

Equation 2 shows that there are two contributing terms to theangular acceleration of the robot: (1) the moment due to gravity
about the point of contact with the ground and (2) a coupling term arising from the coupling ofθa and θg. The direction
of the coupling term is initially against the direction of rolling, while the moment arm due to gravity is always towards the
direction of rolling. Thus, the robot first decelerates during the beginning of the shape change phase (as shown by the pink
part of the graphs in Figure 6) and then accelerates due to a change in sign of the coupling term in the remaining part of the
shape change phase (shown in blue in Figure 6). After finishing the shape change phase, it then continuously accelerates in
the free-fall phase (shown in yellow in Figure 6) solely due to the influence of the moment-arm due to gravity. As the robot
rolls faster, the duration of the free-fall phase gets shorter. Beyond a certain speed, it is possible that the robot is unable to go
through its complete shape change before touchdown in whichcase the simplified four-bar model we use in our work is no
longer valid. This corresponds to touchdown happening at a time before the yellow region in Figure 6. Since our model is no
longer valid in these cases, we do not report or use these results for further analysis.

We define astep of the gait as the sequence of events between consecutive touchdowns of two adjacent modules. At
touchdown, we reassign the nodes to the different links based on the global positions of the nodes. This is illustrated in
Figure 5. In Figure 5(a) joints at 1, 2, 6 and 7 form the joints of the four-bar linkage. After the transition to Figure 5(f) the
four bar is represented by the joints 2, 3, 7 and 8 and joint 3 becomes the pivot point around which the fourbar linkage is
hinged.

When the module comes into contact with the ground, a transition condition is defined at impact of the module on the
ground. Joint angles and the position of the robot stay fixed at transition while velocities are transformed using the transition
conditions. The transition condition relates the angular momentumL

−
of the whole body of the robot about the new pivot

point on the ground just before impact with the angular momentum L+ of the whole body about the new pivot point after
impact. Using a coefficient of restitutionη (found empirically to be 0.94), the transition condition isgiven by the momentum
transfer equation 3 on impact.

L+ = ηL
−

. (3)

Thus, at each step energy is lost with each impact based onη. Also at each step energy is input to the system by the motors
as the loop changes shape. The energy input, to a first order, is constant with each step, however, the energy lost is a function
of velocity (as a component of momentum). So, it is logical topropose that as the system accelerates from zero velocity, a
terminal velocity will be reached where the energy input to the system is equal to the energy lost, assuming a stable steady
state.



Fig. 7. Scalability of the controller to different number ofmodules.

A. Scalability

The particular choice of parameterization made for the controller earlier in Section V has the advantage of making the
controllereasily scaleableto configurations with a different number of modules. This has an advantage in designing controllers
for modular robots since it reduces design and computational requirements for control and makes the controller invariant to the
number of modules in the loop. Consider, for example, Figure7 where a loop robot withn modules is shown. In Figure 7(a),
the apex nodes are 1 andm wherem = 1 + n/2. The link joining nodes 1 and 2 (Link 1) and the link joining nodesm and
m+1 (Link 2) form two links of the four-bar used for analysis and control. The third link (Link 3) is formed by a combination
of the links joining joints 2 throughm and the fourth link (Link 4) is formed by a combination of the links joining joints
m + 1 throughn and 1. Thus, a multi-degree of freedom rolling loop withn modules can be reduced to the same four-bar
linkage used for analysis.

Note that all the joints in Link 3 and Link 4 are stationary during the shape change phase and the only joints that move are
the 4 joints that attach Link 1 and Link 2 to Link 3 and Link 4. The control scheme relies on position control of the servos
to maintain the shape of Links 3 and 4, even though they are notmoving there is some power consumed to maintain this
shape. As the number of modules in these links get larger the weight of the modules will cause larger draws on power, even
exceeding the torque limits of the actuators. One interesting property is that at higher speeds, centrifugal forces will counteract
gravity reducing torque requirements and saving energy.

The scalability of the controller to different number of modules was tested by implementing the controller on rolling loop
configurations with 8, 10, 12 and 14 modules.

V. CONTROL

In Section IV, we made a simplifying assumption that allowedparameterization of the desired shape at touchdown using a
single parameter, the apex angleθa. The controller used for dynamic rolling can now be described by specifying a new desired
shape for the robot at touchdown such that the robot is falling forwards with respect to the pivot point describing the contact
of the robot with the ground. This corresponds to designating node 7 and 2 in Figure 5(a) as the new apex angles of the shape.
When a new desired shape is specified the loop changes shape asis illustrated in Figure 5(b)-(c)-(d). Once it reaches the new
desired position, the local shape does not deform anymore. Now, the robot undergoes a pure falling motion (Figure 5(d)).The
robot falls like an inverted pendulum until node 3 touches down on the ground (Figure 5(e)).

Shapes that are more elongated (corresponding to higher values ofθa) will result in a larger moment arm and higher angular
acceleration. However, the amount of shape change (represented by the net change of joint angles) is also higher. Rounder
shapes correspond to a smaller value ofθa and will result in a smaller moment arm and smaller amount of shape change.
Figure 8 shows the effect of the choice of shape on the moment arm due to gravity. Figure 8(a) shows the smaller moment



(a) Moment arm corresponding to a rounder shape at
touchdown.

(b) Moment arm corresponding to a more elongated shape
at touchdown.

Fig. 8. Effect of shape on moment arm at touchdown.

arm corresponding to a rounder shape and Figure 8(b) shows the larger moment arm corresponding to a more elongated shape.
We should expect that more elongated shapes will give us higher accelerations while rounder shapes may be more efficient.
We will examine the effect of the desired shape on the speed ofthe robot by varying the parameter(θa).

This shape control is implemented by the brain board sendingthe angular positions to corresponding modules over the
RoboticsBus at 60 Hz. Each microcontroller on each module generate PWM signals to the servos which then use a highly
tuned PID position control to maintain or attain the commanded position.

VI. EXPERIMENTS

A. Terminal velocity and specific resistance

One of the main objectives for the experiments is to see if thetrends proposed from the analysis of the model hold true,
namely

1) The robot achieves a terminal speed during rolling and this speed increases with increase inθa.
2) Rounder shapes are more efficient.

Reflective markers were placed on the robot to track a single module and its joint angle by a high speed motion capture
system (VICON). Measurements were recorded at a speed of 100Hz and a resolution of 0.1 mm. The overall workspace of
the VICON however was limited to 3 m× 3 m. To determine the terminal velocity the position of the robot was measured
manually from video to increase the available workspace. Each trial to determine the terminal velocity consisted of twoparts.
In the first part a running start of 4 m was given to the robot to allow it to reach terminal velocity. No measurements were
taken in this part. In the second part, the robot would continue rolling and position was determined manually from the video
footage by marking time stamps as the robot crosses markingson the carpet spaced at 1 foot intervals. The field of view of
the camera covered only the second part of the trial.

The desired shape of the robot was specified using the parameter θa for a 10 module robot.θa was varied between360 to
900. θa = 360 represents a shape whereθa = θs and there is no change in the shape of the robot whileθa = π/2 represents
an elongated shape where the amount of shape change in the robot between touchdowns will be very high. It was found that
shapes with (θa) greater than70o could not be tracked accurately by the controller. However,results for these values are still
reported here.

Specific resistance(ǫ) measures the energy cost of locomotion per unit distance and robot weight. It is calculated as follows:

ǫ =
P

mgv
(4)

whereP is the power input to the robot,m is the total mass of the robot,g is the acceleration due to gravity andv is the
average speed of the robot. Specific resistance is a natural measure for the second claim above,i.e. that rounder shapes consume
less power.

Experimentally measuring specific resistance requires themeasurement of the power consumed by the robot and the average
speed achieved by the robot over the corresponding run. A robot with 10 modules and 5 lithium polymer batteries has a mass
of 1.7 kg. Normalizing the power consumption in this manner with respect to both the speed and mass of the robot allows
meaningful comparison between robots of different sizes and speeds.



B. Motion on inclines

Our initial studies showed that the robot works well on levelterrain, but for this gait to be really useful in space exploration,
search and rescue or any real world scenario we wish to show that it behaves well on non-flat terrain as well. Examining
traversal on an inclined terrain is a step towards more unstructured terrain. It should be obvious that rolling down an incline is
possible (e.g. just by maintaining a circular shape) however, traversing up is not as clear. Experiments were performedgoing
up a slope on an incline of 5 degrees and down a sleep with an incline of -5 degrees. Rolling motion up a long incline is a
good measure of the robustness of the controller to a constant source of disturbance while rolling down an incline tests the
controller’s ability to react to faster touchdown events.

Terminal velocities and power consumption were measured and compared with behavior on level terrain. Multiple trials
were carried out for each shape and incline on the same carpetto maintain consistency across trials.

C. Scalability of the controller

As noted earlier, the particular parameterization chosen for the rolling loop makes it easier to scale the controller toloops
with different number of modules. This was tested by implementing the controller on rolling loop configurations with 8, 10,
12 and 14 modules. The controller maps the links and joints ofall these configurations onto the four-bar likebackbone curve
used earlier for analysis. The user chooses the value ofθa and θs can be easily determined fromθa using Equation 1. The
controller then designates the module touching the ground and the one diameterically opposite as the apex and sets all other
joint angles to a constant value ofθs. The control algorithm forn modules is thus the same as the one used for the loop with
10 modules. This demonstrates the versatility and scalability of the controller.

D. Speed control

Experiments were also carried out to demonstrate arbitary speed control with a human specifying the desired speed using
a joystick in real time. The robot could be sped up by increasing the apex angle specified by the controller. Braking motion
to slow the robot was achieved by designating the module in front of the current touchdown module as the apex of the new
desired shape.

E. Experimental setup

Experiments were carried out on multiple surfaces, but the results reported here are for carpet flooring. The choice of surface
on which the robot rolls has a visible effect on the speed of the robot. The robot was slower on thick carpet than on a thin carpet
placed on a marble floor where the fastest run times were achieved. The choice of flooring also affects the performance of the
IR touch sensors. Thresholds for the sensors were set manually on different floor surfaces to achieve the best performance.

Ground truth data was provided by the high speed motion capture system (VICON). The VICON motion capture system
provides measurement of pose of one of the modules and one joint angle of the robot at a high speed (100 Hz) and sub-
millimeter accuracy. This allowed comparison between the actual and desired trajectories of the joints on the robot andlet us
verify that the controller triggers the correct module on touchdown at the correct time.

VII. R ESULTS

A. Tracking of desired joint trajectories

Figure 9 plots experimental tracking results for one of the joint angles of the robot and also the global position of the robot.
Figure 9(a) shows the height of one of the modules and it should be noted that the crests in thez positions in Figure 9 represent
touchdowns for the module diametrically opposite the tracked module while the troughs represent touchdowns for the tracked
modules themselves. The joint angle of this module is shown in the middle figure and we can verify that the module reaches
θa = π/4 and goes back toπ/6 and that this motion is triggered upon touchdown of the module i.e. when thez position is
at a minimum. Note that the duration where the module holds the apex angleθa is very short.

B. Terminal velocity and specific resistance

Figure 10 plots simulation and experimental results for thefinal speed of the robot for different desired shapes at touchdown.
As predicted in the analysis of the model, the observed behavior of the system was that a terminal velocity was reached. In
addition, as the desired shape becomes more and more elongated (corresponding to increase in the value ofθa), the terminal
velocity achieved by the robot increases. Also as the desired shape grows elongated, the angular acceleration of the robot in
its free fall phase also increases thus resulting in a higherterminal speed. Shapes with an apex angle greater than 70o cannot
keep up with the speed because the servo cannot move fast enough to reach the next shape before the next touchdown.

Below a certain magnitude of shape change, the robot has no terminal velocity. Whenθa = θcritical the robot has just enough
energy to continue motion. Note in the continuous case (withinfinite modules) the terminal velocity atθcritical approaches
0. Geometric observation shows that whenθa = 37o, the center of gravity sits over the new touchdown point. In simulation,
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with values ofθa less than37o, the robot slows down to a halt even if it has some initial momentum. Forθa ≥ 37o, the robot
is able to sustain its momentum in simulation and roll continuously. Experimentally, the robot does not achieve continuous
motion unlessθa > 40o. The experimental terminal velocities are close to the predicted velocities.

Figure 11 plots simulation and experimental values for the specific resistance for different desired shapes. The power
determined analytically should be lower than the actual power input to the robot, because the simulation only takes into
account the power used to change shape. This is shown in our results. The experimental measurements show larger specific
resistance than the theoretical measurements in all trials. More importantly the trend stays the same,i.e. rounder shapes exhibit
lower specific resistance and are more efficient.

Another estimate of energy efficiency of a gait is the amount of travel in joint space that each module must move in order
to move forward. This is measured by the difference between the two anglesθa−θs. By this measure, rounder shapes also use
less energy than the more elongated ones asθa − θs is smaller. It is worthwhile noting that, based on this measure, dynamic
gaits with rounder shapes are also more efficient than kinematic gaits. Maintaining any velocity using a purely kinematic gait
typically requires a large traversal of modules in joint space while, once some speed has been built up, dynamic gaits canbe
sustained using smaller effort in joint space.

To compare these numbers with those for a kinematic gait, specific resistances for different dynamic rolling gaits as well
as kinematic rolling gaits are plotted against terminal velocity as shown in Figure 12. The kinematic rolling gait has higher
specific resistance than all the dynamic rolling gaits whichimplies that the amount of energy used to move a unit distanceis
lower in dynamic rolling than in kinematic rolling, which iswhat one would expect. For completeness, the electrical power
consumed by the total robot is presented in Table III for the kinematic as well as the dynamic gait.
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Fig. 12. Experimental results: specific resistance vs. velocity. Dynamic rolling (shown with ’+’) and kinematic rolling (shown with ’o’).

C. Motion on inclines

Figure 13 summarizes the terminal velocities of the robot ina dynamic rolling gait on different inclines (−50, 00, and50).
On each incline, values ofθa between360 to 700 were used.

In the case of a downward slope, rolling motion with a terminal velocity of 0.9 m/s was achieved even forθa = 360 while
on level terrain no motion was achieved forθa <= 40 degrees. On the upward slope no motion was achieved forθa <= 500.
The trend of terminal velocity increasing with more elongated shapes is preserved on all the inclines. The terminal velocity
also saturates at a lower value for higher slopes of the terrain.

D. Scalability

Figure 14 shows that terminal velocity increases logarithmically with an increase of 3.7 times between 8 and 10 modules.
There is only a small increase found between 10 and 12 modulesand no significant difference between 12 and 14 modules.

45 1.541
50 3.057
55 4.389
60 4.597
65 5.231
70 5.715
Kinematic 4.232

TABLE III

APEX ANGLE (IN DEGREES) VS. POWER (IN WATTS)
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Fig. 14. Terminal velocity vs. number of modules. Apex anglewas 50 degrees in all experiments.

The terminal velocity saturates and approaches a limit at 1.6 m/s.
To compare terminal velocity between the loop of 8 and the loop of 10 modules we can scale the terminal velocity by

dividing by the length of the loop. For the case with 8 modules, this corresponds to a speed of0.4/(8 × 0.06) = 0.833 loop
lengths per second, while for the case with 10 modules this corresponds to a speed of1.29/(10× 0.06) = 2.15 loop lengths
per second. For configurations with 12 and 14 modules, the speeds in loop lengths per second are smaller than for the case of
10 modules since the weight of the robot plays a more significant role. It is harder to maintain or change the shape of a robot
with more number of modules.

This number is a measure of speed that accounts for the difference in size of the loops and shows that a loop with more
joints has a higher velocity in terms of loop lengths per second. A loop with more joints can more accurately accurately
approximates the arc of the shape. Thus, these results show that if the arc is more accurately approximated the faster thegait
is.

In a loop of 14 modules the servos had enough torque to maintain its shape however saturation still occurred. This could be
explained by limitations of the touch sensors that operate at 60Hz and speed of the servos when changing shape. There were
no issues with stability on smooth level terrain in the transverse plane with the larger or smaller loops.

VIII. D ISCUSSION

One of the major findings of this work is that elongated desired shapes at touchdown for a rolling loop lead to higher
terminal velocities. This is shown through a combination ofsimulation and experiments. The result makes sense intuitively as
more elongated shapes create a larger moment arm due to the center of gravity w.r.t. the ground contact point. Because of this
greater moment more acceleration occurs in the falling motion and more energy is put into the system at each step, a result
that agrees with our theoretical predictions. It is interesting to note that the acceleration phase of the dynamic gait is similar
to the motion of an inverted pendulum which has been shown in the context of walking to be very efficient requiring no work
input to move the center of mass [12]. The fastest experimental gait had a speed of 1.6 m/s (roughly 5.4 body lengths per
second for the 10 module robot.) Since the robot can reconfigure to different bodies lengths and use different gaits for different
applications, a more apt measure for speed may be to normalize to module size. Using this measure the 1.6 m/s translates to
26 module lengths per second. To the authors’ knowledge thisis the fastest gait for any untethered modular robot.



Fig. 15. Snapshots of the rolling motion.

Although the experimental and the theoretical results for the terminal velocity are close, the experimental results are
consistently lower. There may be several possible reasons for this difference between the predicted and the actual behavior.
One of the main reasons is that we have not taken into account friction in the modules and did not build a motor model for
the servos. Our model also assumes that the modules can be represented as rods (for determination of inertia parameters). The
actual modules however have a complex shape that could have different moment of inertias. Also, the contact point is not an
ideal hinge point. An individual module has a more complex shape and comes into contact with the ground at more than one
point. Therefore contact dynamics would be a good place for improvement in the model.

The terminal velocities saturated for desired shapes with ahigh apex angle. Hardware limitations in the current prototype
may be partly responsible for this saturation. At a speed of 1.6 m/s, touchdowns occur at about 27 Hz and the hobby servos
used in the prototype are unable to track the desired shape changes for speeds higher than this. Limited bandwidth on the
communications bus might be another reason for this saturation. We have observed frames representing touchdown being
dropped by the controller which could result in the controller’s inability to keep up with the desired shape changes.

Conversely, for smaller values ofθa, the controller was unable to initiate motion in the robot. The desired shape needs to
move through a certain angle for the center of gravity of the resultant shape to lie outside the base of support formed by the
module on the ground. Thus, motion is only initiated after overcoming this initial load.

In simulation and experiments, we also show that although more elongated shapes lead to higher terminal velocities, rounder
shapes have lower specific resistance. This means that more elongated shapes are less energy efficient. The result makes sense
intuitively as rounder shapes need to travel less distance in joint space at each step. We believe higher rolling speeds should
be more energy efficient (as modules on the top do not need to fight gravity due to the centrifugal force).

While the most efficient gait may be the roundest one, it is also the slowest to accelerate. One strategy for faster yet still
more efficient rolling is to start with an elongated shape to accelerate quickly, then decreaseθa linearly with speed until
θa = θs. As it gets faster the shape becomes less oval and more circular. At the limit the shape will be that of a perfect circle
which will roll using zero energy.

Discrepancy between theoretical and experimental specificresistances are due to limitations in the model as explainedearlier.
Additionally, the analytical power computed only takes into account the power used by modules that are moving. It does not
take into account the power used by modules that do not changetheir joint angle. However, the critical result to note hereis
that the trend in variation of specific resistance found through experiments with change in the desired shape matches thetrend
found through simulation.

Figure 16 shows an interesting comparison between the specific resistance of the dynamic rolling gait of CKBOT, other
gaits for CKBOT (including a kinematic rolling gait, a crawling gait and an inchworm gait) and other robotic systems with
non-wheeled modes of locomotion like walking. Here, all quantities have been plotted on a logarithmic scale. Ideally, we
would like to have as low a specific resistance as possible at as high a speed as possible. This corresponds to being on the
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Fig. 16. Specific resistance vs. velocity for several robotic systems. The data for walking systems included here is from[8].

lower right corner of the graph. Robots shown in Figure 16 range from very energy efficient robots such as the Gravity Walker
by McGeer [15] to very fast robots like RHex [19] and iSprawl [11].

It can be seen that the specific resistance for a dynamic rolling gait for CKBOT falls within a reasonable range of that
for legged systems like RHex and iSprawl inspite of CKBOT’s lack of powerful actuators. However, the larger number of
actuators on CKBOT still raises the specific resistance substantially so that it is not as much lower than these fixed configuration
non-wheeled robots, as would be expected.

Figure 16 also compares the dynamic rolling gait with other modular robot gaits. In Section VII, we saw that the dynamic
rolling gait improved on the kinematic rolling gait. From Figure 16 it can be seen that it is a dramatic improvement on the
inchworm gait and crawler gait. The inchworm gait was implemented with 10 CKBOT modules as well whereas the crawling
gait was implemented with only 2 modules. These gaits are very slow and energy inefficient. The kinematic rolling gait is
shown to have greater performance in terms of velocity and specific resistance, but it is the dynamic rolling gait that has
pushed modular robots into the same range as walking systems.

The experimental results prove that this rolling gait is successful in traversing up and down inclines. Further, the trends
in final measured terminal speeds for these cases match the expected trends,i.e. the robot rolls faster downhill than on level
terrain and uphill.

We believe that the scaleability of the controller to configurations with different number of modules is a significant
contribution of this work. It results from the choice of parameterization made for the controller and greatly reduces the
computational complexity of scaling the controller. Thus,if a module or several modules break during a mission the system
may continue after a simple reconfiguration discarding the failed modules. Conversely new modules can be picked up and
added to the loop and the robot can keep going without having to expend significant resources to recompute control strategies.

The number of modules in the loop also has an effect on the performance of the rolling gait. A loop consisting of twice
as many modules, with each module being half the length wouldhave more joints, yet would retain its overall size in terms
of length of the loop. As more joints are added to the loop the robot will more accurately approximate the arcs of the shape.
The results show that making the arc less discrete will increase the velocity of the robot.

As the loop gets larger and larger the center of gravity of therobot gets higher. This should make the robot more susceptible
to falling sideways in the sagittal plane. However, no significant instability in the sagittal plane was detected yet at aloop
length of 14 modules in the case of CKBOT.

IX. FUTURE WORK

This work is part of a research effort to develop modular robots with a large number of modules and controllers that scale.
In this context, we aim to develop controllers that can be easily adapted to a wide variety of modular robot configurations.
The rolling loop configuration is the first step in this effortsince it provides an easy and efficient mode of locomotion to cover
large distances. Future effort in this direction will include the ability to turn and the exploration of optimization techniques to
find optimal gaits. We also aim to examine dynamic controllers that allow the robot to adapt to rough terrain and locomote
over unstructured environments using a conformal gait where the shape of the robot conforms to the profile of the ground in
a dynamic fashion.

Figure 16 includes data for several robots that have improved on their specific resistance or terminal velocity using novel
control and design techniques. iSprawl has a compliant leg design and achieves very fast speeds velocities and low specific



resistance. Incorporating similar compliance into CKBOT will lessen the effect of impacts and improve its speed. Learning
algorithms were used to tune the gaits for RHex [19] and resulted in almost a threefold increase in speed and a halving of
specific resistance. These techniques could be adapted to rolling in order to achieve similar gains in both maximum speed
and specific resistance. One strategy could be to use elongated shapes initially to achieve a high speed, then switch to a more
energy efficient mode by using rounder shapes to maintain this speed.

The dynamic gait implemented in this work exploits thepassive falling dynamicsof the modular loop robot. Significant work
has been performed in this area for walking robots [5], [6] where controllers are developed to take advantage of the passive
dynamics of the robots to reduce torque requirements on the actuators. Indeed, McGeer’s gravity walker [15] in Figure 16has
the lowest specific resistance amongst robots included in that Figure. Since modular robots have multiple actuated degrees of
freedom, controllers that can reduce the requirements on the actuators would present significant benefits in extending the range
and duration of operation of these systems.

The scalability of this controller addresses the interesting issue ofscalable dynamicswhere models and controllers built for
simpler systems can be easily adapted to larger systems. While this reduction to a simpler system was performed manually
in our case, it might be possible to develop more general ideas for reducing complex configurations of modules to a simpler
abstractedmodel for which controllers are easier to develop. Given thedesire to ultimately extend this work to modular robots
with hundreds or thousands of modules for which controllerswould be extremely difficult to develop, the ability to abstract
simpler models will play a significant role in being able to realistically deal with system of these sizes.
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APPENDIX

θ̈g = −(mgl(10 cos(θg) + 11 cos(θs + θg) + 20 cos(
θs

2
) cos((5θs)/2 + θg)) + 2τ )/

(4(4I0 + 9ml2 + 2ml2(6 cos(θs) + 3 cos(2θs) + cos(3θs))));

θ̈a = (mgl((4I0 + 9l2m)(10 cos(θg) + 11 cos(θs + θ1) + 20 cos(θs/2) cos((5θs)/2 + θg))

− 40(4I0 + 9l2m + 2l2m(6 cos(θs) + 3 cos(2θs) + cos(3θs))) cos(3θs + θg + θa))+

2(5(4I0 +9l2m)+8l2m(6 cos(θs)+3 cos(2θs)+cos(3θs)))τ )/(4(4I0 +9l2m)(4I0 +9l2m+2l2m(6 cos(θs)+3 cos(2θs)+cos(3θs))));

θ̈s = 0.


