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Abstract 
Some engineering applications require 

structures to expand and contract in size, while 
retaining their exterior shape. The applications range 
from mundane daily life objects to more fancy art 
structures.  In contrast to a multi degree-of-freedom 
structure, a single degree-of-freedom structure can be 
driven by a single actuator, reducing cost and  
simplifying the control. In this paper, we study single 
degree-of-freedom structures that can be formed by a 
lattice of single degree-of-freedom polyhedral 
expanding units. Due to built-in symmetries, the entire 
structure can expand and contract as one of the units in 
the structure is actuated.  
 
1. Introduction 

In recent years, Hoberman structures have 
gained popularity as “cool toys”. A recent Hoberman’s 
kit “Expandagon” allows a user to assemble expanding 
units to form fascinating single degree-of-freedom 
expanding shapes  [1]. Each Hoberman unit is made 
using revolute joints. However, due to the nature of 
their design, the exterior shape does not remain the 
same during expansion. Other symmetric mechanisms 
such as Octoids and Fulleroids are special 3-
dimensional structures that work due to careful design 
of the mechanism ([5], [2]). Another class of structures, 
referred to as “inflatable structures” has been 
extensively used in space. This technology uses fabric 
of special material which hardens to a desired shape of  
the structure. Modular robotics is a growing field today. 
Here, modules can connect and disconnect with other 
modules. This technology results in robots that can 
“metamorph” or change shape during operation [4], [6].  

The unique contributions of this paper are: (i) 
Systematic guidelines to construct single degree-of-
freedom expanding structures starting out from single 
degree-of-freedom polyhedral expandable units; (ii) 
Each polyhedral unit is made of prismatic joints, as 
opposed to revolute joints in Hoberman designs; (iii) 
The overall structure can expand and contract while 
retaining the exterior shape; (iv) A dynamic analysis is 
presented to facilitate design and selection of actuators; 

and (v) The procedures are illustrated by case study of a 
chair that can accommodate to the size of a user.   

The organization of this paper is as follows: 
Section 2 describes Hoberman single degree-of-
freedom polygonal structures. Section 3 describes the 
geometry of classes of polyhedra and construction of 
single degree-of-freedom polyhedral units. These 
polyhedral units are assembled into expandable single 
degree-of-freedom lattices outlined in Section 4. A 
systematic analysis of dynamic equations of a lattice is 
performed in Section 5. An example of an expandable 
design is discussed in Section 6.  
 
2. Hoberman’s Designs 

Expanding Sphere and Expandagon [1] are 
designs that use revolute joints for interconnecting 
members of the mechanism. The underlying concept in 
these designs is an expanding regular “N-gon”. Figs. 1 
and 2 show designs based on regular 4-gon and 6-gon.  
Because of circular symmetry, expanding N-gons can 
be placed along great circles of a sphere through a point 
on its surface, such as the north pole of a sphere. Other 
great circles can then be tied to the existing N-gons to 
form other great circles. As a result, the mechanism as a 
whole expands once one of the planar components 
expands.  

 
 

 
 
Fig. 1: A schematic of an expanding  “4-gon” based on 
Hoberman sphere design.  
 

From a design point of view, one needs to 
ensure that the adjacent units of an N-gon expand out in 
a symmetric manner. Consider a portion of an N-gon, 
as shown in Fig. 3, in which every line is a link and 
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every intersection of two lines is a joint. For example, 
EBC and CAD are two successive “caps” that form the 
regular N-gon, and so are identical. Their cone angles 
� EBC and � CAD must be the same during  
expansion.  
 

 
 
Fig. 2: A schematic of an expanding  “6-gon” in the 
contracted and expanded state, based on Hoberman 
sphere design. 

Fig. 3: The relationships between the joint angles of an 
N-gon Hoberman design. 
 

In order to ensure this relationship, two 
parallelograms AFGI and CIHJ are made to transmit the 
motion from the unit CAD to the next unit EBC. This 
choice of the parallelograms is consistent with the 
“Expandagon” design by Hoberman. From the 
geometry in Fig. 3, one can show that the angles 
� EBC and � CAD are equal to 2D  if the following 
two conditions are met: (i) HIG is a rigid member; and 
(ii) the angle � HIK=\ = J2 , where J2  is the 

subtended cone angle at the center of the circle by a 

“cap” of the N-gon. For a 4-gon, 
4

S
J  , hence 

� HIK=
2

S . Similarly, for a 6-gon, 
6

S
J  

, hence 

� HIK=
3

S . 

In a Hoberman Expandagon design, a single 
symmetrically expanding N-gon requires 4N members 
that are connected by 6N revolute joints. Hence, the 
number of moving members and joints become quickly 
large as the number N increases. In Expandagon, the 

planar expanding polygons are interconnected by two 
degree-of-freedom joints to obtain 3-dimensional 
expanding structures. This kit, while extremely 
fascinating has two limitations: (i) During expansion, 
the design changes its overall exterior shape; (ii) 
Because of planar modules used in the construction, a 
polyhedral unit has a large number of moving members.  
   As an alternative, in this paper, we consider 
expanding structures that use only prismatic joints 
instead of revolute joints. Also, we attempt in this paper 
is to systematically describe a procedure to create 3-
dimensional expanding structures motivated by 
geometry of regular polyhedral shapes.  
 
3. Single Dof Polyhedral Units  

A large number of polyhedra can be 
constructed. However, only five have the following two 
properties: (i) all faces of the polyhedra are identical; 
(ii) the same number of faces and edges meet at each 
vertex. Such special polyhedra are also called “regular 
polyhedra”  [3]. These are: (I) Tetrahedron, (ii) 
Octahedron, (iii) Cube, (iv) Icosahedron, (v) Pentagonal 
dodecahedron. A “semi-regular polyhedra” is one 
which has the same number of edges meeting at every 
vertex but different kinds of faces. Some examples of 
semi-regular polyhedra are cuboctahedron and 
icosadodecahedron. A cuboctahedron is formed by 
slicing the corners of a cube or an octahedron, hence 
the name. Similarly, icosadodecahedron results by 
slicing the corners of an icosahedron or a pentagonal 
dodecahedron. In both these examples, each vertex has 
the same number of edges but not all faces are the 
same. A large number of polyhedra exist which do not 
fall into the above two categories [3]. 

In this study, we focus on single degree-of-
freedom expandable units that can be constructed using 
regular polyhedra. The choice of regular polyhedra is 
motivated from their built-in symmetries. The 
expanding units are created by replacing an edge of a 
polyhedron by a prismatic joint, while retaining the  
relative orientation between the edges of the 
polyhedron. This concept is sketched in Fig. 4, where 
the edges of a tetrahedron are replaced by prismatic 
joints. Except for the cube and pentagonal 
dodecahedron, it can be shown that such expandable 
units possess a single internal degree-of-freedom, i.e., 
any one of the prismatic joints can be lengthened or 
shortened and the regular polyhedra will remain the 
same.  

A simple argument for expansion of a regular 
tetrahedron is as follows: If the three faces of a regular 
tetrahedron are opened up from their common joining 
vertex as shown in Fig. 5, one gets three equilateral 
triangles in addition to the base. On actuating any one 
of the edges, the four triangles expand out equally. 
They can be assembled back as a regular tetrahedron. 
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Fig. 4 shows a photograph of an expandable tetrahedral 
unit built at University of Delaware in two different 
configurations.  

Fig. 4: The edges of a regular tetrahedron are replaced 
by prismatic joints to form a single degree-of-freedom 
expandable unit. A photograph of a tetrahedral unit 
fabricated at University of Delaware. 
 

A similar reasoning can be given for  the 
expanding octahedron and icosahedron by opening 
these in two dimensional net diagrams, as shown in Fig. 
5 [3]. From the two net diagrams, it is clear that the two 
expanding units have a single degree-of-freedom 
because if any one of the equilateral triangles are 
expanded, the entire unit expands by the same amount 
in order to maintain the same angles. 

Fig. 5: The net diagrams for the octahedron and 
icosahedron show that the systems have single degree-
of-freedom. 
 

If all the edges of a cube are replaced by 
prismatic joints, the overall system has three degrees-
of-freedom since many of the edges are parallel. These 
degrees-of-freedom are the displacements along three 
orthogonal directions. However, if two additional 
prismatic joints are added to the two adjacent face 
diagonals, as shown in Fig. 6, the system becomes  
single degree-of-freedom. This design requires fourteen 
prismatic joints. A similar design is shown for the 
pentagonal dodecahedron, where the pentagonal faces 
have been triangulated. 

For a cube, an alternative is to use the six 
face diagonals to form an inscribed tetrahedron inside 
the cube and actuate the tetrahedron. This actuation 
concept is developed further in the next section and is 
demonstrated through an example in Section 6. 
 
 

Fig. 6: Single degree-of-freedom cube actuated by the 
edges or the inscribing tetrahedron. A pentagonal 
dodecahedron module actuated. 

 
4. Single DOF Polyhedral Lattices 

There are three different ways of 
interconnecting polyhedral units: (i) vertex to vertex 
joining; (ii) edge to edge joining; and (iii) face to face 
joining. In all of these cases, the joining means the 
components of the polyhedral units are rigidly attached 
together. Thus no rotations are allowed anywhere 
within the whole system, only prismatic translations. 

On joining polyhedra at the vertices, one can 
produce some uniform and well-defined structures. For 
example, four tetrahedral units are joined at the vertices 
to form a larger tetrahedron in Fig. 7. In an edge joining 
lattice, as the name suggests, the neighboring polyhedra  
share a common edge. This figure shows an example 
where two cubes are connected at their common edge. 
Polyhedra can also be joined at the faces, as shown in 
the cubic lattice of Fig. 7. 

A single degree-of-freedom lattice can be 
formed using single degree-of-freedom polyhedral 
building blocks by combining them with one of the 
methods mentioned above as long as at least one 
prismatic joint from one block has its motions 
constrained to follow the motion of one on the joining 
block (i.e. for the vertex joining, more than one vertex 
on a block needs to be joined). The objective of the 
design then is to actuate the lattice using just one input, 
anywhere in the mechanism. Expansion of any one 
polyhedral unit enables the entire lattice to expand, 
while retaining the exterior shape.  

Fig. 8 shows schematically how cubic units 
can be used to construct an array, which are then 
stacked on each other to provide a richer 3-dimensional 
array. Such a lattice shares common edges and faces. In 
the cubic lattice, diagonal edges are required only on 
two sides to make the entire lattice reduce to a single 
degree-of-freedom. Fig. 8 also shows an 
interconnection of cubic units where the inscribed 
tetrahedron is used for actuation.  

Fig. 7: Vertex, edge and face joining modules. 
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Sometimes, interconnections of regular 
polyhedral units may give rise to patterns with inter-
polyhedral voids. For example, if a tetrahedral lattice is 
arranged vertex-to-vertex in an array, the inter-unit 
spaces are octahedral. Alternate tetrahedron and 
octahedron can give rise to space filling lattice.  
 

Fig 8: A 3-dimensional lattice formed by cubic 
modules. The actuation could be either through the 
edges or through the edges of an inscribed tetrahedron. 

 
Polyhedral lattices can also be made by 

arranging them symmetrically within imaginary cubes. 
If these imaginary cubes are close-packed, the enclosed 
polyhedra can share a face or an edge. For example,  
Fig. 9 shows an icosahedron placed inside a cube so 
that an edge of the icosahedron touches each face of the 
cube. Then, a series of imaginary cubes, each 
containing a similar icosahedron, can share a face. 
Pentagonal dodecahedra can also be arranged similarly 
inside cubes as shown.  

Instead of single polyhedron, groups of 
polyhedra can also be arranged inside a single 
imaginary cube, with each cube touching the face of 
other cubes arranged symmetrically  [3]. 
 

Fig. 9: An icosahedron/dodecahedron placed inside a 
cube so that an edge   touches each face of the cube.  

5. Dynamic Analysis of  Lattices 
From the perspective of actuator selection of 

such polyhedral lattices, it is important to perform a 
dynamic analysis. The dynamic analysis requires  

knowledge of kinematics of the mechanism as well as 
inertia distribution in the lattice. An interesting feature 
of the kinematics of a polyhedral mechanism is that 
each moving member maintains the same orientation 
with respect to all other members in the mechanism, 
i.e., each member is in pure translation with respect to 
the inertial frame if one of the members is grounded.  
 

Fig 10: A tetrahedron is a set of four nodes, each 
consisting of three prongs which slide respect to 
adjacent nodes. 
 

A lattice is made up of nodes with fixed 
members that slide in and out with respect to members 
of the adjoining nodes. For example, as shown in Fig. 
10, a tetrahedron is a set of four nodes, each consisting 
of three prongs that slide with respect to the prongs of 
the adjacent nodes. Hence, the number of rigid bodies 
in a lattice is the same as number of nodes. Also, to 
simplify the analysis we assume that the mass of an 
element is concentrated at the nodes. In some lattices 
designed for a specific application, some nodes and 
edges may be missing. 

As described earlier, a tetrahedral lattice can 
also be viewed as an octahedral lattice because vertex 
to vertex connecting tetrahedral units leave octahedral 
gaps in between. A systematic method is presented  
here to characterize a tetrahedral/cubic lattice.  

Fig. 11: The coordinate axes to identify a node on a 
tetrahedral lattice.  
 

In a lattice shown in Fig. 11, the nodes must 
be numbered in an orderly fashion. Hence, we define a 



 5 

set of three coordinate axes a, b, c with unit vectors at  

3

S  with  each another in a tetrahedral lattice and at 
2

S  

in a cubic lattice. Without loss of generality, we 
consider the (0,0,0) node to be inertially fixed. Each 
node in the lattice can be described uniquely by an 
integer triple (i,j,k) with inter-nodal distance of l along 
a, b, c. The location of a node with respect to fixed 
origin is  

       )( cbap kjilijk ��   (1) 

where a, b, c are respectively the unit vectors and i, j, k 
are integers. On differentiation, the inertial velocity of 
the node is 

      lijkkjilijk �� VcbaV
~

)(  �� . (2) 

The contribution of the node (i,j,k) to the kinetic energy 
of the system is 

 � � 2~~
2

1
lijkijkijkmijkK �VV �¸

¹

·
¨
©

§
 . (3) 

The contribution of the node (i,j,k) to the potential 

energy of the system is   

np .ijkijkijk gmP  , (4) 

where g is the gravity constant and n is a vector 
opposite in direction to the gravity vector. 
   On using Lagrange’s equations, the resulting 
dynamic equations for the polyhedral lattice are 

ug
i j

ijk
ml

ijkijk
k

ijk
m ijk  ¦ ¦ �¸

¹
·

¨
©
§ �¦ npVV .

~~
��  

      (5) 
On substituting the velocity of the nodes, the dynamic 
equations of motion for a tetrahedral lattice are  

                                                                             

,))222( ugk
i j ijk

mlkijkijkji
k ijk

m  ¦¦ ����

��

��¦ D
��

      (6) 
where nc � D and for a cubic lattice are 

                                                                             

.])222([ ugk
i j ijk

mlkji
k ijk

m  ¦¦ �

��

��¦ �� (7) 

These equations give the actuator force required to 
expand and contract the lattice. As mentioned earlier, 
some of the nodes or edges in the lattice could be 
missing. In these situations, the mass of the node (i,j,k) 
must be suitably modified.  
 
6. Chair Example 

In this section, we study of a lattice that 
approximates a chair as shown in Fig. 12. 

Fig. 12: A lattice that approximates a chair. The 
diagonal members on the side face ensure propagation 
of equal expansion along the three mutually orthogonal 
directions of the cubes forming the lattice. 

 
Mass Matrix( ijkm ) 

j=0 
   i 
k 

0 1 2 3 4 5 6 

10 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 
5 3 6 4 6 4 6 3 
4 7 5 6 4 6 5 6 
3 4 6 0 0 0 6 4 
2 6 4 0 0 0 4 6 
1 4 5 0 0 0 5 4 
0 5 3 0 0 0 3 5 

 
Table 1: The j=0 nodal masses for the chair shown in 
Fig. 12. It is assumed that the mass of a node is directly 
proportional to the number of edge connections of a 
node.  

From the geometry of the chair and edge 
interconnections between the nodes, one can write the 
mass for each node i,j,k in the lattice. For example, the 
nodal masses for j=0 are shown in Table 1. If one 
focuses on the nodes with k values between 6 and 10, 
none have any interconnection, therefore, any mass. For 
k=5, i=1 has three interconnections, hence its nodal 
mass is three units. Similarly, i=2 has six 
interconnections, therefore, a mass of 6 and so on. The 
equations of motion for the chair using cubic lattice 
according to Eq.(7) are: 

umglm  � 394445816 ��   (8) 
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As described in Fig. 8, the same design of 
the chair could also be accomplished by inscribing a 
tetrahedron within each cube forming the lattice. This 
alternative design is shown in Fig. 13. This lattice has 
only six prismatic joints within each cube, as opposed 
to twelve (or more) in the design of Fig. 12. Similar to 
Table 1, nodal masses can be developed for the design 
of Fig. 13. For j=0, these nodal masses are shown in 
Table 2. The equations of motion for this tetrahedral 
lattice of the chair are as follows:  

umglm  � 245128176 ��   (9)  

 

Fig.13: An alternative lattice that approximates a chair. 
An expanding tetrahedron is inscribed within every 
cube forming the skeleton of the chair. 

 
The fabrication of these designs has a 

number of practical considerations. A typical problem 
with the construction of parallel prismatic joints is 
binding. In the lattice examples above, there are many 
parallel prismatic joints. If the system contains a certain 
amount of compliance, as one prismatic member is 
lengthened, the other parallel members may not 
lengthen as much. This often leads to an increase in the 
normal force in the non-driven member, resulting in 
further lag in the lengthening until binding occurs and 
the system seizes. By properly placing multiple 
actuators within the lattice that work in concert, this 
type of binding may be avoided. 

 
7. Conclusion  

The paper proposes a new approach for 
designing and constructing single degree-of-freedom  
expanding structures using single degree-of-freedom 
expanding polyhedral units. The polyhedral units use 
the geometry of regular polygons with edges replaced 
by prismatic joints. Using polyhedral units, a large 

number of useful lattices can be built to approximate a 
given three-dimensional shape. On actuation, the lattice 
can expand while retaining the exterior shape. The 
governing dynamic equations for cubic, tetrahedral, and 
octahedral lattices are developed and illustrated by an 
example of a chair that adjusts in size. We foresee 
applications of these principles to a large number of 
other designs.   

 
Mass Matrix( ijkm ) 

j=0 
   i 
k 

0 1 2 3 4 5 6 

10 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 
5 0 5 5 0 0 5 0 
4 5 0 5 0 5 0 5 
3 0 5 0 0 0 5 0 
2 5 0 0 0 0 0 5 
1 0 5 0 0 0 5 0 
0 3 0 0 0 0 0 3 
 
Table 2: The j=0 nodal masses for the chair  shown 
in Fig. 13.  
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