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Abstract

In recent years, several studies have focussed on ro-
botic systems with many degrees-of-freedom. Such ro-
bots often have stringent joint limits. For motion plan-
ning, a key question is to find feasible joint solutions
of the system for a given position and orientation of
the end-effector. In the presence of joint limits, the
solutions are found by searching the joint space using
heuristics. In this paper, we propose a stmple algo-
rithm to construct the joint solutions for a robot chain
with many degrees-of-freedom and joint limits, using
dextrous workspaces. The algorithm provides a set of
sufficient conditions to guarantee feasible joint solu-
tions in the presence of limits. The procedures are
illustrated by theory and experiments on PolyBot, a
modular robot developed at Xerox PARC.

1 Introduction

In recent years, for highly versatile applications,
robots are being designed with many degrees-of-
freedom. Such robots have been referred to as “hyper-
redundant” or “modular” in the literature ([3], [4], [2],
[8]). These robots usually have a limited range of mo-
tion at the joints. Motion planning of such systems
requires finding a set of feasible joint angles to place
the end-effector in a desired position and orientation.
With the built in hyper-redundancy, one would expect
that there are many ways to reach a position and ori-
entation. However, in the presence of joint limits, the
currently accepted practice is to search for the solu-
tions heuristically. Among these are techniques which
rely on the use 'backbone curves’ [4], discrete modal
summation [2], constrained optimization [5] or more
general search, though these tend to be slow and not
real-time.

In this paper, our objectives are two-fold: (i) Provide
a procedure to identify a subregion of the workspace
where a reference point on the end-effector is guar-
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anteed to reach in any orientation, despite the joint
limits; (i) Outline a simple recursive computational
algorithm to find the joint solution. The results of
this paper are illustrated with PolyBot a modular ro-
bot system developed at Xerox PARC. The capability
to guarantee that a point in the workspace is reachable
in any orientation despite joint limits is unique to this
work. Consequently, the search procedure changes
from a random search to a well informed search, where
the existence of the solution is known a priori.

The organization of this paper is as follows: Section 2
outlines the definition of dextrous workspace and its
significance in computing the inverse solutions. The
dextrous workspace is used to build computational al-
gorithms in Section 3. An implementation of the al-
gorithm on PolyBot is described in Section 4. Issues
of parallelization of this algorithm are also described
in this section.

2 Dextrous Workspace

The dextrous workspace consists of points in the carte-
sian workspace where a robot reference point can reach
in any orientation of the end-effector. On the other
hand, the reachable workspace consists of cartesian
points reachable by the reference point in at least
one orientation of the end-effector. As one would ex-
pect, dextrous workspace is a subset of the reachable
workspace. The dextrous workspace is defined for all
planar and spatial robot chains ([1],[6],[7]).

In this study, we consider many degrees-of-freedom
robot chains with joint limits. We assume that the
entire chain consists of N joints. We number the joints
and links outwards from the base as 1 to N. The robot
end-effector is link NV and the reference point is on this
link. We assign coordinate frames to the links of the
chain according to a standard robot convention. We
assume that Fy is the coordinate frame attached to
link 0, i.e. the ground. F; is attached to link ¢ of the



chain with origin on joint axis ¢, for ¢ = 1,..., N. We
attach an extra frame Fy 1 at the reference point on
the end-effector parallel to F. We denote the origin
of a frame F; by O;.

The mathematical problem we are addressing is as fol-
lows: “Identify a set of easily verifiable sufficient con-
ditions for a robot chain with joint limits that guar-
antee that a point in Fy is reachable by the reference
point On 41 in a given orientation of the end-effector.
Also, outline a procedure to construct the feasible joint
solution”.

Theorem 1: For some n < N, partition the par-
titton tnto n and N — n Links on each side of Opy1.
Now, identify the following two dextrous workspaces of
Ony1: (i) with respect to Fo using the chain of first n
links; () with respect to Fy 1 using the last N—n—1
links with the coordinate frame Fpn 1 fized in the de-
sired position and orientation of the end-effector. If
these two dextrous workspaces have common points,
On 1 1s reachable by the chain in the specified orien-
tation while satisfying all joint limits.

Proof: Let P be a point that belongs to the two
dextrous workspaces of Oy, 1 with respect to Fy and
Fny1. Hence, there exists a feasible configuration of
the first n links such that O, can be placed at P
in any orientation of F,,. Similarly, there also exists
a configuration of the last N — n — 1 links such that
Op 41 can be placed at P in any orientation of Fp, 1.
The question now is if there exists a feasible joint con-
figuration of the n+ 1th joint, consistent with its joint
limit. A supporting sketch is shown in Fig. 1.

Due to the property of the dextrous workspace, O, 11
can be placed at P using the first n links, with any
desired orientation of F,,. The same is true at P for
Fany1 using the last N —n — 1 links. Hence, given the
joint limit of the n + 1th joint, one can always choose
suitable orientations of F, and F,, 1 such that the
mechanism is assemblable. End of Proof.

A larger intersection of common points can be found
if instead of the dextrous workspace, the reachable
workspace is used for one of the two partitions.

3 Computational Algorithm

Theorem 1 provides a set of sufficient conditions for as-
semblability of the chain in the presence of joint limits
using the property of dextrous workspace. From the
point of view of constructing the solution, these re-
sults can be applied in several alternative ways: (i) A
partition of the chain is made into n and N —n — 1
links such that the dextrous workspaces of O,1, us-

Figure 1: A schematic of a partition of an IV link chain
into n and N —n links along with the coordinate frames

ing the two chains, have a common intersection. From
the theorem, we are now assured of a set of feasible
joint angles which can be computed through search.
If required, the two partitions can be further subdi-
vided and the process can continue recursively using
the dextrous workspace of the partitions. (ii) The en-
tire chain is partitioned into repeating units, each with
a number of joints, such that the dextrous workspace
of each unit is well known. A search is then performed
over the dextrous workspace of the units to connect
the frame Fy with Fn,1. This search places the end-
effector in the correct orientation with the reference
point at the desired location.

Both these approaches are workable. The first ap-
proach requires finding the dextrous workspace of a
chain with arbitrary number of joints. If such a char-
acterization is possible, one can very quickly find re-
gions in the workspace which are reachable by the end-
effector. Sometimes, it may be difficult to characterize
the dextrous workspace of an arbitrary chain. In this
case, the second approach can be used with a well de-
fined structure of the dextrous workspace of a unit.

The second approach can be described mathematically
as follows: Let N links of the chain be partitioned into
[ repeating units, with coordinate frames F;, and Fie
assigned to the beginning and end links of the 7th unit,
fori =1,...,I. On each unit, an additional coordinate
frame F;.s is attached to its end link parallel to F.,
but coincident with the origin of ;1 5. The frame as-
signments come from the standard robot conventions
of a N link series chain.

Given the coordinate frames Fy and Fn 1, the search
problem is to find a sequence of intermediate coor-
dinate frames F, ¢ = 2,...,1. This sequence of co-
ordinate frames has to satisfy the property that the
origin of F; 11 p lies within the dextrous workspace of
the unit ¢ with respect to the coordinate frame Fj
and Fn 1 is in the desired orientation. Once this is
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Figure 2: The workspace of a (i) 1-link, (ii) 2-links
PolyBot chain with joint limits of of +3 and —%. Each
edge of the square denotes the segment length L.

performed, from the property of dextrous workspace,
we are guaranteed that feasible joint angles for each
unit can be found.

In order to simplify the computations involved in this
search, we can impose further properties on the dex-
trous workspace. For example, we can desire the
workspace of each unit to be spherical (or circular for
robots moving in a plane). The motivation for such
a choice is that intersection of two spheres or circles
can be found geometrically or analytically in a simple
manner. We would make use of such a property to
compute the joint solutions in the following sections.

4 PolyBot: An Example

The concepts in this paper are illustrated with the
example of PolyBot, a modular reconfigurable robot.
Most configurations of the robot include serial chains.
Some instance have had as many as 32 modules in a
single chain. In the Glv4 version, pictured in Fig-
ure 4, every module has one degree of freedom, bat-
teries and a small 8-bit microprocessor (PIC16F877).
Each module also has the ability to connect to one of
4 connection ports. However, we consider an arrange-
ment of PolyBot modules such that all joint axes are
aligned normal to a plane. The resulting robot is pla-
nar. Each module has a segment length L and a range
of motion of +3 and — % with respect to the neigh-
boring module.

Figure 3: The workspace of a 3-link PolyBot chain
with joint limits of of +3 and —3. Each edge of the
square denotes the segment length L.

Figure 4: PolyBot Glv4 module with 1 degree of
freedom, servo, computer, batteries and 4 connection
ports.
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Figure 5. The workspace of a 4-link polyBot chain
with joint limits of of +7 and —F. Each edge of the
square denotes the segment length L.

4.1 Dextrous Workspace

For 1-module, the workspace of its end point is shown
in Fig. 2. As expected, the reachable workspace of
the end-point is a semicircle. This workspace does
not have any dextrous points. The workspace of the
end point for a 2-chain module is also shown in the
same figure. This workspace is bounded by six arcs as
shown in the figure. Since the range of motion of the
first link is £7 defined from the positive X direction
and the range of motion of link 2 is again &3 from
the nominal pointing direction of link 1, the workspace
extends further along the positive X direction. This
workspace does not have any dextrous points.

The workspace of the end point for a 3-module chain
is shown in Fig. 3. It contains a hole and the exterior
boundry is made up of five arcs. If P was a dextrous
point in this workspace, a circle of radius L around
this point must be reachable by the end of a 2-module
chain. Since the workspace of Fig. 2(ii) can not ac-
comodate a circle of radius L, it is evident that the
workspace of the 3-module chain would not contain a
dextrous point either. Similar to the 2-module case,
the workspace is more pronounced along the positive
X direction.

The workspace of the end point for a 4-module chain
is shown in Fig. 5. Its exterior boundary has five arcs.
A semicircular ring of radius 2L is also shown in this
figure. A point P’ on this ring can be reached by the

end-point, but only half of all possible orientations.
We call this the half-dextrous ring. One way to vi-
sualize these orientations is to draw a tangent to the
semicircle at P. The pointing directions are limited to
one side of this tangent line. It can be verified from
Fig. 3 that if the end point is on this ring in one of
these orientations, the end point of the 3-module chain
always lies within its workspace and limits on joint 4
are satisfied. In summary, a 4-module chain does not
have fully dextrous points in its workspace. However,
it has a semicircular ring of 2L with the special prop-
erty that a point on it can be reached in at least half
of all possible orientations. These half rings are used
to compute the joint solutions in the next section.

It can be further shown that as the chain length
increases, i.e., n > 4, where n is the number of
modules, the reachable and dextrous workspaces be-
come larger and potentially contain circular and semi-
circular disks around the origin of Fy. In each
case, it can be shown by geometry that the dextrous
workspace is bounded by a half-dextrous ring of radius

(n—2)L.

4.2 Computations

For PolyBot, since the dextrous workspace is fully
characterizable for any number of modules, we use
the first approach outlined in Section 3 to compute
the joint solutions. We assume that the number of
modules NV of the PolyBot are 8 x 2!, where i is some
integer. We choose the goal to reach a specified end-
pont, while satisfying the joint limits.

We divide the chain into two equal sub-chains of %
modules, i.e., the chain is opened up at the % + 1th
joint.

The case where % = 4 is treated as a special case, in
general % >= 8. Since the dextrous space is bounded
by the half-dextrous ring and there are 8 or more mod-
ules in each sub-chain, the dextrous workspace is de-
lineated as the inside of the half-dextrous ring with
radius (4 —2)L. Thus, a feasible joint solution exists
using the two dextrous workspaces if the total distance
between the origins Ogp and Op 41 is less than or equal
to 2(§ — 2)L. This process of subdivision of the sub-
chains continues in a “tree-like” fashion until one of
the following conditions are met: (i) the correspond-
ing dextrous workspaces do not have an intersection;
(ii) at least one chain has 4 modules left. The 4 module
chain has the half-dextrous half circle which is treated
as a dextrous workspace with an extra check to en-
sure that orientations are chosen in the reachable half



Figure 6: An experiment on a 16-module polyBot,
where the end-effector is commanded to a (x =7,y =

2,0 = —1 rad).

Figure 7: An experiment on a 16-module polyBot,
where the end-effector is commanded to a (x =7,y =

2,0 = —2 rad).

space of orientation.

Regardless of where the process terminates, we are
assured after the first step that there is a joint solution
within specified limits. This solution can be obtained
via a search with the guarantee that the solution will
always be found.

One of the salient points of this algorithm is that the
search space has a much smaller dimension than N
originally posed in the problem. If the procedure ter-
minates with all subchains of length 4, the search re-
duces to 4 dimensions, even though N could be poten-
tially large. Also, this algorithm is very appropriate
for parallelization since one processor can be devoted
to solving the joint angles of the lowest subchain in
the tree.

4.3 Experiment

The algorithm was verified using 16 PolyBot modules
(Generation 1, Version 4) arranged to form a planar
chain. Each module has a processor to process po-
sition commands. The algorithm was executed on a
Pentium which sends commands to the processors over
a serial bus. The solutions to arbitrary goal positions
were found in the order of seconds.

Since the modules are symmetric and each sub-chain
end is in the dextrous workspace, the end point of the
whole chain is in a dextrous workspace.

Fig. 6 and 7 show two representative solutions with

the end-effector in the same position but different ori-
entation. Fig. 8 shows another example.

Although the algorithm has not yet been implemented
in a distributed or parallel fashion, it is expected that
it will not be difficult to do so as the hardware with
distributed processing exists on the second generation
PolyBot modules. Also, self collision is an aspect that
is not detailed in the current algorithm using dextrous
workspace that is needed to generate realizable joint
angles. In the experiment implementation, self colli-
sion was checked while searching for a valid solution
using Lin-Canny closest features method. In many
cases, the collision checking consumes much of the
computational resources.

5 Conclusion

A new approach has been proposed in this paper to
compute joint solution of a ‘many degrees-of-freedom’
robot chain with joint limits using the notion of dex-
trous workspace of a chain. This approach does not
rely upon heuristic search but uses sufficient condi-
tions to guarantee the existence of feasible joint so-
lutions. Subregions of the workspace are identified
where a reference point is guaranteed to reach in
an orientation, despite joint limits. The results of
this paper are illustrated with the example of a 16-
module robot developed at Xerox PARC. This pro-
cedure is highly parallelizable and possesses potential



Figure 8: An experiment on a 16-module polyBot,
where the end-effector is commanded to a (x =5,y =

—3,0 =1 rad).

for application on robot systems with many degrees-
of-freedom.

Future work includes extending this method to non-
planar workspaces (i.e. 6DOF workspaces) imple-
menting a distributed formulation, and incorporating
a fast method of detecting collisions.
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