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Abstract 
This paper proposes the Attribute/Service Model 
(ASM) and associated design patterns as a general and 
simple framework for applications that require 
programming with multiple tasks on multiple embedded 
processors. This model enables the programming of 
complex tasks with multiple sensors and actuators on 
highly distributed yet tightly coupled systems by: using 
a simple unified protocol for communication; allowing 
the access to attributes or the running of services to be 
independent of where such attributes or services reside; 
protecting shared resources, and simplifying the 
synchronization of multiple processes in multiple 
processors. Associated design patterns such as the 
event/trigger mechanism and general event-driven 
control are developed on ASM. ASM is designed for 
the coordination of distributed sensors, actuators and 
computational tasks on modular self-reconfigurable 
robots. However it may be used for any multi-threaded 
distributed embedded control network. Unlike the most 
existing distributed objects, ASM can be implemented 
on embedded systems with small footprints. ASM has 
been implemented both in C on top of VxWorks on the 
MPC555 embedded microprocessor, and in Java on PC. 
The Controller Area Network (CAN) has been used as 
the communication medium. It could be equally 
implemented on any real-time operating system using 
any communication media. 
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1. Motivation and Introduction 
In general, real-time distributed control systems require 
synchronization and coordination of sensors, actuators 
and computation across multiple processors. In 
particular, PolyBot (see Figure 1) [8,9], a modular 
reconfigurable robot developed at Palo Alto Research 
Center, challenges the software design for massively 
distributed, largely scalable, deeply embedded, tightly 
coupled, and highly responsive control systems. 
Modular reconfigurable robotic systems are those 
systems that are composed modules that can be 
disconnected and reconnected in different 
arrangements. Each arrangement forms a new system 

with unique capability. In many cases, the number of 
modules is much larger than the types of modules 
within such systems, i.e., the systems tend to be more 
homogenous than heterogeneous. The general 
philosophy underlying these systems is to simplify the 
design and construction of components while 
enhancing functionality and versatility through larger 
numbers of modules.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. PolyBot modules in a spider configuration 
 
    PolyBot is distributed and scalable since it will 
consist of 10s to 100s of connected modules; it is 
embedded since each module has an embedded 
microprocessor with multiple local I/O channels for 
sensing and actuation, as well as remote channels for 
inter-module communication; it is coupled since 
controls in modules have to be synchronized for most 
of the tasks; it is responsive, requiring multi-threading 
and real-time event handling. PolyBot has 
demonstrated its flexible capabilities in locomotion and 
manipulation (see videos in 
http://www.parc.com/modrobots). However, 
programming its various tasks effectively remains a 
challenging problem. 
    Real-time operating systems (RTOS) provide a set of 
general APIs and mechanisms, e.g., task scheduling, 
interrupt handling, and semaphores. However they vary 
considerably with different RTOSs and communication 
media, making programming and porting costly.  
Various higher-level programming models have been 



developed for such distributed control and 
coordination. However, most of these are impractically 
large or slow for use in embedded environments. 
    This paper proposes the Attribute/Service Model 
(ASM) as a general and simple framework for 
applications that require programming with multiple 
threads on multiple processors. Attributes are 
abstractions for resources shared among multiple 
threads located in one or more processors. Services are 
abstractions of hardware or software routines. In 
general, hardware services correspond to settings in 
registers controlling hardware peripherals, and software 
services are threads that may be run for particular tasks.  
    ASM extracts some widely used features in 
distributed multi-threaded applications: task 
synchronization, resource protection, and transparent 
remote accessing. The presence of these features makes 
it a valuable design pattern. A design pattern [3] 
names, abstracts, and identifies the key aspects of a 
common design structure that make it useful for 
creating a reusable object-oriented design.  
    ASM supports a component-based architecture, 
where components are either attributes or services 
distributed over the communication network. 
Component-based software architectures have been 
highly promoted in the software engineering 
community [7]. Much work has been done on Real-time 
CORBA[2,6] and there are several Java packages for 
the coordination of services in distributed environments 
such as Sun’s JavaSpaces [12] and IBM’s TSpaces 
[13]. ASM borrows some of the ideas from these 
architectures. However, few of these implementations 
are suited for embedded systems with small footprints. 
ASM is more lightweight, focused more on 
coordination among sensors and actuators in multi-
tasking and multi-processor environments.  
    ASM also serves as middleware that resides between 
the RTOS and the application software. This enables it 
to provide certain basic features independent of the 
RTOS and communication media. ASM is not 
application specific; rather it applies to the general 
domains of distributed coordination of sensors, 
actuators and tasks. Also ASM is not implementation 
specific; it can be implemented on most RTOSs and 
communication media.  
    ASM has been implemented both in C on top of 
VxWorks on the MPC555 embedded microprocessor, 
and in Java on PC, using Controller Area Network 
(CAN) as the communication medium. It could be 
equally implemented on any real-time operating system 
using any communication media. 
   This paper is organized as follows: Section 2 explains 
the attribute interface and service interface. Section 3 
presents the ASM communication pattern: its 
client/server structure and communication protocol. 
Section 4 discusses some extended design patterns of 
ASM commonly used in control systems. Section 5 
concludes the paper. 

2. ASM Interface Pattern 
There are two common elements in any computational 
system: computation resources and computation 
routines. For distributed and/or concurrent systems, 
resources are shared by many routines in one or more 
processors across a network. ASM takes this view to an 
extreme: communication between two routines resided 
anywhere in the network is by setting and getting values 
from a shared resource. Therefore, ASM is essentially 
the shared variable model in distributed computation. 
The shared variable model has the advantage over the 
message passing model, in that no explicit messages 
need to be defined at the application level, all the 
communication are performed transparently. ASM has 
two types of components: attributes and services. 
Attributes represent computation resources and services 
represent computation routines. 

2.1 Attribute Interface 
Attributes are abstractions of shared resources. An 
example of an attribute is a desired value of some 
device, e.g., temperature, which may be set by a high 
level task, such as a temperature profile generator. The 
low level linear controller then uses this value to drive 
the system to the desired state. Another example of an 
attribute is storage, where producers are putting 
products, and the consumers are getting products.  
    Each attribute is associated with set(), get() and 
reset() methods. These methods are executed in the 
same thread of control as the calling routine. Structures 
built into the attributes protect the shared resources as 
well as supporting synchronization between multiple 
services. In particular, each attribute is associated with 
a block of data that has multi-thread protection, i.e., at 
any given time, only one thread can access the data 
through the set(), get() or reset() methods that are 
provided for all attributes. This ensures the integrity of 
the shared data. In some sense, the attribute interface 
pattern is an instantiation of the “Monitor Object” 
pattern [1].   
    There is a Boolean variable valid indicating the 
validity of the data. Every time a set() operation is 
performed, valid is set to be true and every time a 
get() operation is performed, valid is set to be false. 
There are two synchronization flags associated with the 
block of data, syncGetFlag and syncGetFlag. When 
syncGetFlag is set, the routine getting data using get() 
will block until the data is set by another routine. When 
syncSetFlag is set, the routine setting data using set() 
will block until the data is used by another routine 
before setting a new value. The combination of these 
two produces four possible ways for a particular 
attribute to synchronize with services that access the 
data. For example, a routine that tracks desired settings 
will block until a new desired setting comes in; a 



routine that generates commands will block until the 
previous command has completed execution.  
    A typical implementation for the attribute set() and 
get() function looks like: 
 
set(data) { 
 mutex_lock();         //protection starts 
    while (syncSetFlag and valid) wait(); 
 
 copy_in(data); 
 valid = true; 
 
 if (syncGetFlag) signal(); 
 
 mutex_unlock();    //protection ends 
} 
 
get(data) { 
    mutex_lock();       //protection starts 
    while (syncGetFlag and not valid) wait(); 
 
 copy_out(data); 
 valid = false; 
 
 if (syncSetFlag) signal(); 
 
 mutex_unlock();   //protection ends 
} 
 
where mutex_lock() protects the data from concurrent 
accessing, wait() is a conditional block and signal() is 
a corresponding notification method.  

2.2 Service Interface 
Services are abstractions of hardware or software 
routines. All services have associated methods start(), 
stop(), suspend(), continue() and reset() methods. 
Services can be realized in software, firmware or 
hardware. In general, a firmware or hardware service 
corresponds to setting some registers which control 
system devices; while a software service is a thread that 
is programmed to perform a particular task or behavior.  
    All services are considered to have their own thread 
of control with start() and stop() commands, even 
though some services may only be a couple of lines of 
code. A routine calling start() for a service will not  
block; many services can run concurrently. In some 
sense, the service interface pattern is related to the 
“Active Object” pattern [4], but simpler. A service can 
also be associated with a set of parameters that shall be 
initialized when the service is started.  For example, if 
the service is a state-based system, the initial state of 
the service can be passed with the start() function. 
Since a service represents a thread of control, then it 
must be stopped before it is started again.  
    A service can also be suspended, and then be 
continued again. The difference between start/stop and 
suspend/continue is that start()/stop() would 

create/terminate a new software or hardware process, 
while suspend()/continue() would only 
pause/continue to run the same process. There are two 
Boolean flags indicating the state of a service: started 
meaning the service has been started and running 
meaning the service is not suspended. However the 
service could not be running until it is started. The 
reset() method may only be applied to a service that is 
not running.     
    An example of a hardware service might be as 
simple as turning on a power switch, or starting a signal 
generation; a software service might be a linear 
controller tracking a desired setting, or a nonlinear 
optimization routine solving a set of constraints over 
time.  

3. ASM Communication Pattern 
For a networked embedded system, it is a challenging 
problem to coordinate and synchronize services in 
different processors. ASM simplifies this at the 
application level by making the location of where 
attributes are stored or where services are run 
transparent to the user and by using a unified protocol 
for communication. All attributes and services are 
accessible both locally and remotely where remote is 
defined as accesses requiring inter-processor 
communication. Local and remote objects are created 
differently but have the same interface described in the 
previous section. The creation of a local object 
involves a local registration, which assigns the object 
with a class ID and an object ID. The creation of a 
remote object involves a remote lookup operation, 
which also associates the object with the class ID and 
the object ID of the object it refers to. A local object is 
called a server object, which runs a service or stores the 
attribute data, and a remote object is called a client 
object, which refers to a service or an attribute in a 
remote location. Every client object is created with a 
client port, which is obtained when a successful 
connection is established. A port can be either one-to-
one or one-to-many communication. This port becomes 
a handle for communication with the remote 
processor(s). More than one client object can share the 
same client port if they are all running in the same 
thread of operation. 
    In addition to using attribute get() to obtain remote 
values, the Publish/Subscribe pattern is also integrated 
into ASM. In Publish/Subscribe, a local attribute can 
subscribe to another local attribute of the same class 
located in a remote processor in the network. Whenever 
a local attribute publishes its current data, all the 
subscribers of that attribute will receive it. For 
example, a monitoring service in one processor may 
hold a list of readings, each of which subscribes to the 
current reading of some sensor in the network. 
Whenever a reading is published, the corresponding 
reading in the monitoring service will be updated. The 



rate of the publication is set by the server, not the 
client. Some common patterns are: publish at a fixed 
rate, publish when a value changes significantly, or the 
combination of both. Note that functions 
subscribe()/publish() apply to local attributes only. 
The Publish/Subscribe mechanism is more efficient 
than the remote attribute get() when the client and the 
server need to be synchronized frequently and changes 
in the server are unable to be predicted by the client.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Class diagram of ASM 

 
    Figure 2 shows the class diagram of ASM. The 
notation used in the class diagrams in this paper is 
adopted from the design pattern book [3]. A class is 
depicted by a box with the class name bolded, followed 
by operations and variables of the class. A dashed 
arrow starting with an empty circle indicates the 
implementation of the operation. A solid line 
connection with an empty triangle indicates the 
subclass relation.  
    Every processor supporting ASM has a gateway 
daemon whose job is to accept connection requests 
from other processors and then spawn a new server 
daemon for each such connection. Each ASM server 
daemon is responsible for dispatching and invoking the 
correct actions for remote attributes and services 
associated with its connection (Figure 3). A client 
object calling an interface function will generate a 
request message through its proxy and send the 
message through the port to the remote server. The 
remote server will execute the request and send the 
result or status back to the client through the same port.   

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

Figure 3: Flowchart of ASM server daemon 
     

    The underlying communication protocol for remote 
access of attributes and services is simple and uniform. 
A message header contains method ID, class ID and 
object ID; the reminder of the message is the actual 
data. If the method ID indicates a request of finding the 
class ID or object ID by name, the data field would be 
the string representing the class or object name. The 
server shall search the lookup table to find the 
corresponding attribute or service according to the IDs 
or the names. A flag in the method ID indicates whether 
the client needs a reply or not. For methods finding IDs 
or getting attribute values, the reply flag would be set 
by the system, otherwise the client can set the flag to 
indicate whether a reply is needed or not. If a return 
message is demanded, the client may choose to block 
while waiting for the message. For example, if a client 
wants to make sure a remote service has been started as 
requested; it should choose to wait for the reply from 
the remote server. The functions of client proxies and 
server daemons make local and remote objects 
transparent at the application level. 
    ASM has been implemented both on the MPC555 
microprocessor and on PC, using Controller Area 
Network (CAN) as the communication medium. CAN 
has proven that it fits very well into the suite of 
sensor/actuator buses because of its low price, multiple 
sources, highly robust performance and widespread 
acceptance [5]. However the CAN protocol is a low-
level one, with a maximum of eight bytes of data per 
frame. A higher-level protocol developed on top of 
CAN, named MDCN (Massively Distributed Control 
Net) [10,11], has been used.  MDCN handles messages 
of large sizes, supports three types of communication 
(individual, group and broadcast), has eight priority 
levels, and can address up to 255 nodes. MDCN has 
been implemented both in C on the RTOS VxWorks 
and in Java for PC. ASM is then implemented on the 
top of MDCN at both ends. The implementation is such 
that Java and C objects can be used interchangeably, 
i.e., a remote Java ASM object can refer to a C ASM 
object and vice versa.  
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4. Extensions and Examples of ASM 
Both attributes and services in ASM can be extended 
with data types and operations. This section presents 
three fundamental extensions that are useful in 
distributed control.  

4.1 Event/Trigger Pattern 
For embedded systems with sensors, actuators and 
tasks, one important type of coordination is to react to 
the changes of system or in environmental conditions. 
The event/trigger pattern is made for that purpose. A 
trigger is associated with a particular type of condition 
change. A trigger shall be fired whenever that condition 
change occurs. The change can be either a logical or a 
physical signal, such as timer expiration or sensor value 
changes. An event can be associated with a set of 
triggers; whenever one of the triggers associated with 
an event is fired, the event is activated.  
    Figure 4 displays the class diagram of the 
event/trigger pattern, in which the dot with a solid 
triangle indicates possibly more than one reference. In 
this pattern, an event is a subclass of an attribute, with 
the syncGetFlag set to be true and the syncSetFlag 
set to be false. An event can wait for a trigger with 
waiting(). A process calling the event waiting function 
will be blocked until the event is triggered. A trigger 
can be operated as an interrupt service routine, where 
the hardware interrupt can cause the firing of a trigger, 
or as a software thread that continuously polls the state 
of the device and fires the trigger whenever the trigger 
condition is satisfied. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

Figure 4: Class diagram of event/trigger pattern 
 

4.2 Event-Driven Service Pattern 
In many situations, software services are not running 
continuously, but rather are triggered by events. For 
example, a service can be triggered periodically by 
timers or by sensor reading passed the threshold. The 
event-driven service pattern is made for this purpose. 
An event-driven service is a subclass of a service that is 
associated with an event. The operation of the service 
corresponds to a thread running on a periodic software 
task, triggered by the event. Figure 5 shows the class 
diagram of the event-driven service pattern. A service 
can be synchronized with a local or remote event by 
waiting for that event using function waiting(). 
Whenever a trigger is fired, any service waiting for the 
event associated with that trigger is activated. The 
exactly what action follows varies with the trigger type. 
For example, if the event is triggered by a timer, then a 
regular service may be called; if it is triggered by an 
exception, then an exception handler may be called. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Class diagram of event-driven service  

4.3 Phase Automata Pattern 
Most discrete control mechanisms can be represented 
by state machines. Phase automata are generally event-
driven discrete state machines with periodical 
behaviors. The phase of each indicates that machine’s 
particular starting point in the automata in a continuous 
time domain. Phase automata are efficient 
representations of hybrid systems with both higher-
level discrete event-driven and lower-level continuous 
characteristics. A phase automaton extends an event-
driven service with: a state, a direction, an initialization 
routine, and an event handler as a service function. The 
event handler in general consists of two parts: an action 
function and a next state function. Figure 6 shows the 
class diagram of the phase automaton. 
 The initialization routine will be executed at the 
beginning of start(), which is inherited from the event-
driven service. The input argument to the initialization 
routine indicates the initial delay phase of the 
automaton. The initialization routine is responsible for 
setting the initial state and the initial actions.   

EventDrivenService

service(type) 
start() 

//run a thread: 
while (true) { 
  type=event.waiting();
  service(type);  
} 

Service

event 

get() 
return type 

for all event in eventList 
     event.set() 

add event to eventList

Trigger 

associate(event) 
fire() 

Service

eventList 
syncGetFlag=true 
syncSetFlag=false 
type 

Attribute 

Event 

waiting() 



    In addition to having a persistent state like all 
automata, phase automata have direction variables; so 
that phase automata can run forward or backward.  
   

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6: Class diagram of phase automata 

 
    Phase automata provide a general framework for 
controlling coordinated behaviors, such as locomotion 
gaits [9]. They can represent time driven or sensor 
driven, periodic or non-periodic, local or global, and 
hierarchical behaviors.    

5. Conclusions 
This paper has presented the Attribute/Service Model 
(ASM) and related design patterns for coordination of 
multiple sensors, actuators and tasks in a networked 
embedded control system. In addition to supporting 
useful design patterns, ASM provides the structural 
bricks for component-based architectures and serves as 
a middleware residing between real time operating 
systems and applications. ASM extracts basic features 
that are widely used for multi-threaded coordination. It 
enables the efficient software design for massively 
distributed, largely scalable, deeply embedded, tightly 
coupled, and highly responsive control systems by: 
using a simple unified protocol for communication; 
allowing the access to attributes or the running of 
services to be independent of where such attributes or 
services reside; protecting shared resources, and 
simplifying the synchronization of multiple processes in 
multiple processors. Design patterns derived from the 
basic model, such as Event/Trigger, Event-Driven 
Services and Phase Automata demonstrate the 
generality of ASM. ASM can be implemented in 
embedded systems efficiently with small footprints. 
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