
Attribute/Service Model: Design Patterns for Efficient Coordination of
Distributed Sensors, Actuators and Tasks in Embedded Systems

Ying Zhang, Mark Yim, Craig Eldershaw, Kimon Roufas and Dave Duff

Palo Alto Research Center
3333 Coyote Hill Road, Palo Alto, California 94304

yzhang,yim,celdersh,kroufas,dduff@parc.com

Abstract
This paper proposes the Attribute/Service Model
(ASM) and associated design patterns as a general and
simple framework for applications that require
programming with multiple tasks on multiple embedded
processors. This model enables the programming of
complex tasks with multiple sensors and actuators on
highly distributed yet tightly coupled systems by: using
a simple unified protocol for communication; allowing
the access to attributes or the running of services to be
independent of where such attributes or services reside;
protecting shared resources, and simplifying the
synchronization of multiple processes in multiple
processors. Associated design patterns such as the
event/trigger mechanism and general event-driven
control are developed on ASM. ASM is designed for
the coordination of distributed sensors, actuators and
computational tasks on modular self-reconfigurable
robots. However it may be used for any multi-threaded
distributed embedded control network. Unlike the most
existing distributed objects, ASM can be implemented
on embedded systems with small footprints. ASM has
been implemented both in C on top of VxWorks on the
MPC555 embedded microprocessor, and in Java on PC.
The Controller Area Network (CAN) has been used as
the communication medium. It could be equally
implemented on any real-time operating system using
any communication media.

Keywords: distributed embedded system model,
networking architecture

1. Motivation and Introduction
In general, real-time distributed control systems require
synchronization and coordination of sensors, actuators
and computation across multiple processors. In
particular, PolyBot (see Figure 1) [8,9], a modular
reconfigurable robot developed at Palo Alto Research
Center, challenges the software design for massively
distributed, largely scalable, deeply embedded, tightly
coupled, and highly responsive control systems.
Modular reconfigurable robotic systems are those
systems that are composed modules that can be
disconnected and reconnected in different
arrangements. Each arrangement forms a new system

with unique capability. In many cases, the number of
modules is much larger than the types of modules
within such systems, i.e., the systems tend to be more
homogenous than heterogeneous. The general
philosophy underlying these systems is to simplify the
design and construction of components while
enhancing functionality and versatility through larger
numbers of modules.

Figure 1. PolyBot modules in a spider configuration

 PolyBot is distributed and scalable since it will
consist of 10s to 100s of connected modules; it is
embedded since each module has an embedded
microprocessor with multiple local I/O channels for
sensing and actuation, as well as remote channels for
inter-module communication; it is coupled since
controls in modules have to be synchronized for most
of the tasks; it is responsive, requiring multi-threading
and real-time event handling. PolyBot has
demonstrated its flexible capabilities in locomotion and
manipulation (see videos in
http://www.parc.com/modrobots). However,
programming its various tasks effectively remains a
challenging problem.
 Real-time operating systems (RTOS) provide a set of
general APIs and mechanisms, e.g., task scheduling,
interrupt handling, and semaphores. However they vary
considerably with different RTOSs and communication
media, making programming and porting costly.
Various higher-level programming models have been

developed for such distributed control and
coordination. However, most of these are impractically
large or slow for use in embedded environments.
 This paper proposes the Attribute/Service Model
(ASM) as a general and simple framework for
applications that require programming with multiple
threads on multiple processors. Attributes are
abstractions for resources shared among multiple
threads located in one or more processors. Services are
abstractions of hardware or software routines. In
general, hardware services correspond to settings in
registers controlling hardware peripherals, and software
services are threads that may be run for particular tasks.
 ASM extracts some widely used features in
distributed multi-threaded applications: task
synchronization, resource protection, and transparent
remote accessing. The presence of these features makes
it a valuable design pattern. A design pattern [3]
names, abstracts, and identifies the key aspects of a
common design structure that make it useful for
creating a reusable object-oriented design.
 ASM supports a component-based architecture,
where components are either attributes or services
distributed over the communication network.
Component-based software architectures have been
highly promoted in the software engineering
community [7]. Much work has been done on Real-time
CORBA[2,6] and there are several Java packages for
the coordination of services in distributed environments
such as Sun’s JavaSpaces [12] and IBM’s TSpaces
[13]. ASM borrows some of the ideas from these
architectures. However, few of these implementations
are suited for embedded systems with small footprints.
ASM is more lightweight, focused more on
coordination among sensors and actuators in multi-
tasking and multi-processor environments.
 ASM also serves as middleware that resides between
the RTOS and the application software. This enables it
to provide certain basic features independent of the
RTOS and communication media. ASM is not
application specific; rather it applies to the general
domains of distributed coordination of sensors,
actuators and tasks. Also ASM is not implementation
specific; it can be implemented on most RTOSs and
communication media.
 ASM has been implemented both in C on top of
VxWorks on the MPC555 embedded microprocessor,
and in Java on PC, using Controller Area Network
(CAN) as the communication medium. It could be
equally implemented on any real-time operating system
using any communication media.
 This paper is organized as follows: Section 2 explains
the attribute interface and service interface. Section 3
presents the ASM communication pattern: its
client/server structure and communication protocol.
Section 4 discusses some extended design patterns of
ASM commonly used in control systems. Section 5
concludes the paper.

2. ASM Interface Pattern
There are two common elements in any computational
system: computation resources and computation
routines. For distributed and/or concurrent systems,
resources are shared by many routines in one or more
processors across a network. ASM takes this view to an
extreme: communication between two routines resided
anywhere in the network is by setting and getting values
from a shared resource. Therefore, ASM is essentially
the shared variable model in distributed computation.
The shared variable model has the advantage over the
message passing model, in that no explicit messages
need to be defined at the application level, all the
communication are performed transparently. ASM has
two types of components: attributes and services.
Attributes represent computation resources and services
represent computation routines.

2.1 Attribute Interface
Attributes are abstractions of shared resources. An
example of an attribute is a desired value of some
device, e.g., temperature, which may be set by a high
level task, such as a temperature profile generator. The
low level linear controller then uses this value to drive
the system to the desired state. Another example of an
attribute is storage, where producers are putting
products, and the consumers are getting products.
 Each attribute is associated with set(), get() and
reset() methods. These methods are executed in the
same thread of control as the calling routine. Structures
built into the attributes protect the shared resources as
well as supporting synchronization between multiple
services. In particular, each attribute is associated with
a block of data that has multi-thread protection, i.e., at
any given time, only one thread can access the data
through the set(), get() or reset() methods that are
provided for all attributes. This ensures the integrity of
the shared data. In some sense, the attribute interface
pattern is an instantiation of the “Monitor Object”
pattern [1].
 There is a Boolean variable valid indicating the
validity of the data. Every time a set() operation is
performed, valid is set to be true and every time a
get() operation is performed, valid is set to be false.
There are two synchronization flags associated with the
block of data, syncGetFlag and syncGetFlag. When
syncGetFlag is set, the routine getting data using get()
will block until the data is set by another routine. When
syncSetFlag is set, the routine setting data using set()
will block until the data is used by another routine
before setting a new value. The combination of these
two produces four possible ways for a particular
attribute to synchronize with services that access the
data. For example, a routine that tracks desired settings
will block until a new desired setting comes in; a

routine that generates commands will block until the
previous command has completed execution.
 A typical implementation for the attribute set() and
get() function looks like:

set(data) {
 mutex_lock(); //protection starts
 while (syncSetFlag and valid) wait();

 copy_in(data);
 valid = true;

 if (syncGetFlag) signal();

 mutex_unlock(); //protection ends
}

get(data) {
 mutex_lock(); //protection starts
 while (syncGetFlag and not valid) wait();

 copy_out(data);
 valid = false;

 if (syncSetFlag) signal();

 mutex_unlock(); //protection ends
}

where mutex_lock() protects the data from concurrent
accessing, wait() is a conditional block and signal() is
a corresponding notification method.

2.2 Service Interface
Services are abstractions of hardware or software
routines. All services have associated methods start(),
stop(), suspend(), continue() and reset() methods.
Services can be realized in software, firmware or
hardware. In general, a firmware or hardware service
corresponds to setting some registers which control
system devices; while a software service is a thread that
is programmed to perform a particular task or behavior.
 All services are considered to have their own thread
of control with start() and stop() commands, even
though some services may only be a couple of lines of
code. A routine calling start() for a service will not
block; many services can run concurrently. In some
sense, the service interface pattern is related to the
“Active Object” pattern [4], but simpler. A service can
also be associated with a set of parameters that shall be
initialized when the service is started. For example, if
the service is a state-based system, the initial state of
the service can be passed with the start() function.
Since a service represents a thread of control, then it
must be stopped before it is started again.
 A service can also be suspended, and then be
continued again. The difference between start/stop and
suspend/continue is that start()/stop() would

create/terminate a new software or hardware process,
while suspend()/continue() would only
pause/continue to run the same process. There are two
Boolean flags indicating the state of a service: started
meaning the service has been started and running
meaning the service is not suspended. However the
service could not be running until it is started. The
reset() method may only be applied to a service that is
not running.
 An example of a hardware service might be as
simple as turning on a power switch, or starting a signal
generation; a software service might be a linear
controller tracking a desired setting, or a nonlinear
optimization routine solving a set of constraints over
time.

3. ASM Communication Pattern
For a networked embedded system, it is a challenging
problem to coordinate and synchronize services in
different processors. ASM simplifies this at the
application level by making the location of where
attributes are stored or where services are run
transparent to the user and by using a unified protocol
for communication. All attributes and services are
accessible both locally and remotely where remote is
defined as accesses requiring inter-processor
communication. Local and remote objects are created
differently but have the same interface described in the
previous section. The creation of a local object
involves a local registration, which assigns the object
with a class ID and an object ID. The creation of a
remote object involves a remote lookup operation,
which also associates the object with the class ID and
the object ID of the object it refers to. A local object is
called a server object, which runs a service or stores the
attribute data, and a remote object is called a client
object, which refers to a service or an attribute in a
remote location. Every client object is created with a
client port, which is obtained when a successful
connection is established. A port can be either one-to-
one or one-to-many communication. This port becomes
a handle for communication with the remote
processor(s). More than one client object can share the
same client port if they are all running in the same
thread of operation.
 In addition to using attribute get() to obtain remote
values, the Publish/Subscribe pattern is also integrated
into ASM. In Publish/Subscribe, a local attribute can
subscribe to another local attribute of the same class
located in a remote processor in the network. Whenever
a local attribute publishes its current data, all the
subscribers of that attribute will receive it. For
example, a monitoring service in one processor may
hold a list of readings, each of which subscribes to the
current reading of some sensor in the network.
Whenever a reading is published, the corresponding
reading in the monitoring service will be updated. The

rate of the publication is set by the server, not the
client. Some common patterns are: publish at a fixed
rate, publish when a value changes significantly, or the
combination of both. Note that functions
subscribe()/publish() apply to local attributes only.
The Publish/Subscribe mechanism is more efficient
than the remote attribute get() when the client and the
server need to be synchronized frequently and changes
in the server are unable to be predicted by the client.

Figure 2. Class diagram of ASM

 Figure 2 shows the class diagram of ASM. The
notation used in the class diagrams in this paper is
adopted from the design pattern book [3]. A class is
depicted by a box with the class name bolded, followed
by operations and variables of the class. A dashed
arrow starting with an empty circle indicates the
implementation of the operation. A solid line
connection with an empty triangle indicates the
subclass relation.
 Every processor supporting ASM has a gateway
daemon whose job is to accept connection requests
from other processors and then spawn a new server
daemon for each such connection. Each ASM server
daemon is responsible for dispatching and invoking the
correct actions for remote attributes and services
associated with its connection (Figure 3). A client
object calling an interface function will generate a
request message through its proxy and send the
message through the port to the remote server. The
remote server will execute the request and send the
result or status back to the client through the same port.

Figure 3: Flowchart of ASM server daemon

 The underlying communication protocol for remote
access of attributes and services is simple and uniform.
A message header contains method ID, class ID and
object ID; the reminder of the message is the actual
data. If the method ID indicates a request of finding the
class ID or object ID by name, the data field would be
the string representing the class or object name. The
server shall search the lookup table to find the
corresponding attribute or service according to the IDs
or the names. A flag in the method ID indicates whether
the client needs a reply or not. For methods finding IDs
or getting attribute values, the reply flag would be set
by the system, otherwise the client can set the flag to
indicate whether a reply is needed or not. If a return
message is demanded, the client may choose to block
while waiting for the message. For example, if a client
wants to make sure a remote service has been started as
requested; it should choose to wait for the reply from
the remote server. The functions of client proxies and
server daemons make local and remote objects
transparent at the application level.
 ASM has been implemented both on the MPC555
microprocessor and on PC, using Controller Area
Network (CAN) as the communication medium. CAN
has proven that it fits very well into the suite of
sensor/actuator buses because of its low price, multiple
sources, highly robust performance and widespread
acceptance [5]. However the CAN protocol is a low-
level one, with a maximum of eight bytes of data per
frame. A higher-level protocol developed on top of
CAN, named MDCN (Massively Distributed Control
Net) [10,11], has been used. MDCN handles messages
of large sizes, supports three types of communication
(individual, group and broadcast), has eight priority
levels, and can address up to 255 nodes. MDCN has
been implemented both in C on the RTOS VxWorks
and in Java for PC. ASM is then implemented on the
top of MDCN at both ends. The implementation is such
that Java and C objects can be used interchangeably,
i.e., a remote Java ASM object can refer to a C ASM
object and vice versa.

ASObject

ASObject(name)
ASObject(port, name)

Attribute

set()
get()
reset()
subscribe()
publish()

Service

start()
stop()
reset()
suspend()
continue()

Local
registration

Remote
lookup classId

objectId

valid
syncGetFlag
syncSetFlag

running
started

msg=read(port)

status=act(msg)

reply(msg)?

write(port, status)

yes

no

4. Extensions and Examples of ASM
Both attributes and services in ASM can be extended
with data types and operations. This section presents
three fundamental extensions that are useful in
distributed control.

4.1 Event/Trigger Pattern
For embedded systems with sensors, actuators and
tasks, one important type of coordination is to react to
the changes of system or in environmental conditions.
The event/trigger pattern is made for that purpose. A
trigger is associated with a particular type of condition
change. A trigger shall be fired whenever that condition
change occurs. The change can be either a logical or a
physical signal, such as timer expiration or sensor value
changes. An event can be associated with a set of
triggers; whenever one of the triggers associated with
an event is fired, the event is activated.
 Figure 4 displays the class diagram of the
event/trigger pattern, in which the dot with a solid
triangle indicates possibly more than one reference. In
this pattern, an event is a subclass of an attribute, with
the syncGetFlag set to be true and the syncSetFlag
set to be false. An event can wait for a trigger with
waiting(). A process calling the event waiting function
will be blocked until the event is triggered. A trigger
can be operated as an interrupt service routine, where
the hardware interrupt can cause the firing of a trigger,
or as a software thread that continuously polls the state
of the device and fires the trigger whenever the trigger
condition is satisfied.

Figure 4: Class diagram of event/trigger pattern

4.2 Event-Driven Service Pattern
In many situations, software services are not running
continuously, but rather are triggered by events. For
example, a service can be triggered periodically by
timers or by sensor reading passed the threshold. The
event-driven service pattern is made for this purpose.
An event-driven service is a subclass of a service that is
associated with an event. The operation of the service
corresponds to a thread running on a periodic software
task, triggered by the event. Figure 5 shows the class
diagram of the event-driven service pattern. A service
can be synchronized with a local or remote event by
waiting for that event using function waiting().
Whenever a trigger is fired, any service waiting for the
event associated with that trigger is activated. The
exactly what action follows varies with the trigger type.
For example, if the event is triggered by a timer, then a
regular service may be called; if it is triggered by an
exception, then an exception handler may be called.

Figure 5: Class diagram of event-driven service

4.3 Phase Automata Pattern
Most discrete control mechanisms can be represented
by state machines. Phase automata are generally event-
driven discrete state machines with periodical
behaviors. The phase of each indicates that machine’s
particular starting point in the automata in a continuous
time domain. Phase automata are efficient
representations of hybrid systems with both higher-
level discrete event-driven and lower-level continuous
characteristics. A phase automaton extends an event-
driven service with: a state, a direction, an initialization
routine, and an event handler as a service function. The
event handler in general consists of two parts: an action
function and a next state function. Figure 6 shows the
class diagram of the phase automaton.
 The initialization routine will be executed at the
beginning of start(), which is inherited from the event-
driven service. The input argument to the initialization
routine indicates the initial delay phase of the
automaton. The initialization routine is responsible for
setting the initial state and the initial actions.

EventDrivenService

service(type)
start()

//run a thread:
while (true) {
 type=event.waiting();
 service(type);
}

Service

event

get()
return type

for all event in eventList
 event.set()

add event to eventList

Trigger

associate(event)
fire()

Service

eventList
syncGetFlag=true
syncSetFlag=false
type

Attribute

Event

waiting()

 In addition to having a persistent state like all
automata, phase automata have direction variables; so
that phase automata can run forward or backward.

Figure 6: Class diagram of phase automata

 Phase automata provide a general framework for
controlling coordinated behaviors, such as locomotion
gaits [9]. They can represent time driven or sensor
driven, periodic or non-periodic, local or global, and
hierarchical behaviors.

5. Conclusions
This paper has presented the Attribute/Service Model
(ASM) and related design patterns for coordination of
multiple sensors, actuators and tasks in a networked
embedded control system. In addition to supporting
useful design patterns, ASM provides the structural
bricks for component-based architectures and serves as
a middleware residing between real time operating
systems and applications. ASM extracts basic features
that are widely used for multi-threaded coordination. It
enables the efficient software design for massively
distributed, largely scalable, deeply embedded, tightly
coupled, and highly responsive control systems by:
using a simple unified protocol for communication;
allowing the access to attributes or the running of
services to be independent of where such attributes or
services reside; protecting shared resources, and
simplifying the synchronization of multiple processes in
multiple processors. Design patterns derived from the
basic model, such as Event/Trigger, Event-Driven
Services and Phase Automata demonstrate the
generality of ASM. ASM can be implemented in
embedded systems efficiently with small footprints.

Acknowledgements:
This work is funded in part by the Defense Advanced
Research Project Agency (DARPA) contract #
MDA972-98-C-0009. Thanks to Markus Fromherz for
valuable comments and suggestions.

 References

[1] D.C. Schmidt, “Monitor Object: an Object
Behavior Pattern for Concurrent Programming”, C++
Report, vol. 12, Mar. 2000.

[2] D.C. Schmidt, D.L. Levine, and S. Mungee, “The
Design and Performance of Real-Time Object
Request Brokers”, Computer Communications, vol.
21, pp. 294-324, Apr. 1998.

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides,
“Design Patterns: Elements of Reusable Object-
Oriented Software”, Addison-Wesley Professional
Computing Series, 1995.

[4] R.G. Lavender and D.C. Schmidt, “Active Object:
an Object Behavioral Pattern for Concurrent
Programming”, Proc. 2nd Annual Conference on
Pattern Languages and Programs, pp. 1-7,
September 1995.

[5] W. Lawrenz, CAN System Engineering: From
Theory to Practical Applications, Springer, 1997.

[6] Object Management Group, Real-time CORBA
Joint Revised Submission, OMG Document orbos/99-
02-12 ed., March 1999.

[7] C. Szyperski, Component Software: Beyond
Object-Oriented Programming, Addision-Wesley
Publishing Company, 1997.

[8] M. Yim, D. Duff, K. Roufas, “PolyBot: a Modular
Reconfigurable Robot” Proc. of the IEEE Int. Conf.
on Robotics and Automation, April 2000.

[9] M. Yim, Y. Zhang, D. Duff, “Modular Robots”,
IEEE Spectrum, Feb. 2002.

[10] Y. Zhang, K. Roufas, M. Yim, “Software
Architecture for Modular Self-Reconfigurable
Robots”, IEEE/RSJ International Conference on
Intelligent Robots and Systems, Hawaii, 2001.

[11] Y. Zhang, K. Roufas, M. Yim, “Massively
Distributed Control Nets for Modular Self-
Reconfigurable Robots”, AAAI Spring Symposium for
Intelligent Distributed and Embedded Systems, 2002.

[12] Sun’s JavaSpace:
http://java.sun.com/products/javaspaces/

[13] IBM’s TSpace: http://www.icc3.com/ec/tspace/

EventDrivenService

init(phase)
action()
nextState(type)
service(type)

PhaseAutomata

//service code
newState(type);
action(); state

direction

