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Abstract.    In this paper, we define Proteo as a class of three-dimensional (3D) metamorphic robotic system capable 
of approximating arbitrary 3D shapes by utilizing repeated modules. Each Proteo module contains embedded 
sensors, actuators and a controller, and each resides in a 3D grid space. A module can move itself to one of its open 
neighbor sites under certain motion constraints. Distributed control for the self-reconfiguration of such robots is an 
interesting and challenging problem. We present a class of distributed control algorithms for the reconfiguration of 
Proteo robots based on the “goal-ordering” mechanism. Performance results are shown for experiments of these 
algorithms in a simulation environment, and the properties of these algorithms are analyzed.  
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1. Introduction and Related Work 

 
Metamorphic robotic systems were originally proposed 
and studied in (Chirikjian, 1993) and (Murata et. al, 
1994), where two types of two-dimensional (2D) 
metamorphic robotic systems were developed. A 
metamorphic robotic system (Chirikjian, 1993) is a 
collection of independently controlled mechatronic 
modules capable of approximating arbitrary shape, 
each of which has the ability to connect, disconnect 
and climb over adjacent modules. Metamorphic robotic 
systems share the following properties: 
 
• [Uniformity] All modules have the same structure 

mechanically and electronically, typically the 
physical structure of each module has some 
symmetry as well. 

• [Connectivity] Modules are connected at all 
times, so the collection of modules acts as a single 
robotic system. 

• [Mobility] Each module has the ability to 
maneuver, so that the system is self-
reconfigurable. 

• [Locality] Each module is embedded with a local 
processor; communication occurs between 
adjacent modules. 

 

This type of homogeneous system is highly advocated 
(Murata et. al, 1994) for its robustness, adaptability 
and mass production. Possible applications range from 
flexible manipulation to emergent structures and 
electronic sculptures.  
    In addition to these metamorphic systems, other 
work in modular reconfigurable robots include 
(Fukuda and Kawauchi, 1990), (Paredis and Khosla, 
1993), (Yim, 1994), (Hamlin and Sanderson, 1996), 
(Will et al, 1999) and (Unsal and Khosla, 2000). The 
earlier of these works provided the impetus and 
physical proof of concept for modular reconfigurable 
systems. Self-reconfigurability that comes from 
metamorphic systems extends the autonomous 
versatility of these systems. 

1.1 Overview 
 
The problem of self-reconfiguration is to rearrange the 
modules to change from one overall shape to another, 
without external assistance. This paper studies methods 
for distributed self-reconfiguration control of three-
dimensional (3D) metamorphic robotic systems.  
    In order to make the methods general, a generic 
model for a class of metamorphic robotic systems, 
called Proteo, is defined. A Proteo model includes the 
configuration space in which the modules reside and 
constraints on how modules can move. The model is 



 
 

general enough to accommodate a large class of 
metamorphic robots with different geometry and 
motion constraints. It is essentially an extension of the 
model developed in (Chirikjian et. al, 1996), with the 
emphasis on motion constraints.  The distributed 
reconfiguration control algorithms in this paper are 
developed for the Proteo model. 
    The challenge for distributed control for self-
reconfiguration is that each module must decide its 
next move based on the desired final configuration and 
only its local state, which includes delayed or 
incomplete global information obtained via 
communication from other modules.  
    The key behind the algorithms presented is the 
“ordered-goal” constraint, i.e. locations in the final 
configuration are filled in a pre-defined globally known 
partial order. The use of the “ordered-goal” constraint 
ensures some kind of monotonicity or stability of the 
distributed system and also greatly reduces the 
communication time for each module to obtain the 
global information it needs about the system.  
    Three algorithms based on the “ordered-goal” 
constraint are developed.  One is distance-based, where 
modules move, generally, toward the closest unfilled 
goal. Another is heat-based; it simulates a heat flow 
from goals to moving modules, and modules move, 
generally, along the temperature gradient.  The third is 
a hybrid of those two, which greatly reduces local 
minima compared to the individual methods.  All of 
these distributed algorithms are parallel, both in the 
sense that all modules compute in parallel and in the 
sense that several modules may move at the same time.  
All the algorithms work for any metamorphic robotic 
system that fits the definition of the Proteo model. 
    The control algorithms were tested in a simulation 
environment.  While none of the methods guarantees to 
fully reach final configurations, our testing results 
show that the hybrid method does outperform the other 
two in terms of the 100% goal completion.  Further, 
the observed configuration times scale approximately 
linearly over an order of magnitude range of the 
number of modules. 
    The simulation environment, written in Java with 
Java 3D, supports the general Proteo model with 
motion constraints and allows one to “plug and play” 
any control algorithm derived from a base control 
structure. The system has been used to study 
biologically inspired systems and emergent structures 
(Bojinov et. al, 2000). 

1.2 Related Work 
 
Much work on metamorphic robots has been done in 
the past five years, in both design and motion 
control/planning. Existing 2D metamorphic robots 
include Hexagonal Modules (Pamecha et. al, 1996), 
Fractum (Murata et. al, 1994) and 2D Self-Organizing 
Collective Robots (Hosokawa et. al, 1998). Existing 
3D metamorphic robots include 3D Self-
Reconfigurable Structure (Murata et. al, 1998), 
Robotic Molecule (Kotay et. al, 1998), and Crystalline 
Modules (Rus and Vona, 1999, 2000). 
    Both motion planning and distributed control of 
such metamorphic robots have been studied.  
    For motion planning,  (Pamecha et. al, 1997) 
presented a technique of simulated annealing to drive 
the reconfiguration process with configuration metrics 
as cost functions. Performance associated with 
different configuration metrics was also analyzed. 
Since finding an optimal motion sequence is believed 
to be computationally intractable, (Chirikjian et. al, 
1996) presented methods for computing upper and 
lower bounds for such sequences, which can be used as 
guidance for motion planning.  
    For distributed control, (Murata et. al, 1994) used a 
diffusion-like process with a local type fitness measure 
to obtain a movability strategy, while the actual motion 
is random. The randomness of motion makes 
convergence of the system problematic. A distributed 
simulated annealing approach was described in 
(Murata et. al, 1998), however, the system performed 
well only when there was a small number of modules 
(up to 20). Even though there is no fundamental 
difference, most of the planning and control algorithms 
previously described have only one module move per 
time step. 
    In general, there have been no algorithms or control 
strategies that guarantee 100% completion of arbitrary 
goal configurations with motion constraints. Two 
approaches have been investigated in literatures. One is 
to use meta-modules, i.e., a collection of modules as 
one unit to move around. Examples of this approach 
were discussed in (Rus and Vona, 1999) and (Nguyen 
et. al, 2000). Another is to restrict the space of 
configurations. (Nguyen et. al, 2000) presented a 
theoretical proof for a 2D Proteo model, which can be 
extended to 3D as well. 
    Most planning and control strategies are for self-
reconfiguration with the final configuration specified in 
some form. Emergent structures is another interesting 
approach, i.e., final configurations are not specified 
explicitly but are emergent as the result of applying 
local control rules. (Hosokawa et. al, 1998) developed 



 
 

control rules for their 2D Self-Organizing Collective 
Robots to traverse a vertical plane. (Bojinov et. al, 
2000) generated several biologically inspired control 
laws to “grow” stable structures for a 3D Proteo 
model. With this approach, even though the specific 
shape of the resulting structure is non-deterministic, 
the emergent structure has the desired functionality. 

2. The Proteo Model and Motion Constraints 

Proteo is a class of metamorphic robots that is 
composed of uniformly shaped modules that normally 
occupy individual spaces on a uniform discrete grid or 
lattice. Proteo treats motions from one grid position to 
another as discrete steps. A single discrete step of a 
Proteo module is constrained to its open neighbor sites 
in the lattice, with the support of one of its connected 
modules. 

2.1 Example 
An example of a Proteo module has the shape of a 
rhombic dodecahedron (RD), a 12-sided dual uniform 
polyhedron that is a kind of 3D analog of a hexagon 
(see Fig. 1(a)). An RD module can move itself by 
rolling around one of its edges shared with another 
module (see Fig. 1(b)). 
 
 

      
 

(a)    (b) 
 

Figure 1.  (a) A rhombic dodecahedron (RD)   
                   (b) Two RD’s with two faces mated 

 
The RD shape has several good properties:  
 
1. An RD is isohedral (i.e., all faces are alike). This 

isohedral property simplifies manufacture.  One 
advantage to repeating modules is the ability to 
batch fabricate, minimizing the unit cost.  In 
addition, each module can be made of repeating 
parts.  For example, each polyhedron is made of 
faces, each face made of edges and each edge 
made of vertices.  If the polyhedron is an 
isohedron with uniform faces like the rhombic 

dodecahedron, then batch fabrication can be 
applied at the face level and the edge level as well. 

 

2. Modules of RD shape are packed so they fill space 
with minimal gaps. When two faces of two 
identical RD’s are aligned and pressed together 
(mated) as in Figure 1(b), a rotation about one of 
the shared edges will result in another set of faces 
aligning.  All subsequent rotations will have the 
same result.  This property is also true for cubes 
and all regular polyhedra, however it is not true 
for all isohedra. 

3. Like hexagons, an RD module requires only a 
single simple rotational motion to move to an 
open neighbor site; the rotation about any edge of 
an RD module from one site to another is always 
exactly 120 degrees. The reason for this simplicity 
is that, when packed, every edge is formed by the 
adjacency of at most three RD’s.  When there are 
three RD’s around one edge, no motion can occur 
about that edge — the 360-degree space is filled.  
When there is one RD, no motion can occur either 
since there must be another RD to be moved over 
for support.  Thus motion can only occur when 
there are exactly two RD’s.  This uniformity of the 
edge relationships is the key to the simplicity of 
the design of a mechanism that allows rotations 
about edges. 

 
This is a promising example of the Proteo model. 
However, the actuation design for the RD shaped 
module turns out to be much more difficult than 
expected. The algorithms presented in this paper are 
tested in a simulation environment with RD shaped 
modules. However, the same algorithms shall work for 
the general Proteo model without committing to any 
particular shape. 

2.2 Proteo Spaces 
Proteo robot modules reside in a grid space.  A grid 
space consists of a regular uniform lattice (or “array”), 
with each site (“cell”) either empty or occupied by a 
module.  For simplicity, obstacles are not yet 
considered. Figure 2 shows two typical types of 3D-
grid spaces that are described by the way uniform 
objects pack. Formally, let Z be the set of integers; then 
the 3D-grid space described by the simple cubic 
packing is Z3.  Similarly, the space described by the 
face centered cubic packing is a subset of Z3 with the 
sum of three coordinates (x+y+z) even.  A 
neighborhood of a site is defined to be a set of adjacent 



 
 

sites.  For example, for the simple cubic packing, there 
are 6 face adjacent neighbors, 18 edge adjacent 
neighbors, and 26 vertex adjacent neighbors; for the 
face centered cubic packing, there are 12 face adjacent 
neighbors (which are also the 12 edge adjacent 
neighbors) and 18 vertex adjacent neighbors. 

                     
 

(a)                                                     (b) 
 
 

Figure 2.  (a) Simple cubic packing  
                            (b) Face centered cubic packing 

 
RD modules naturally reside in the 3D-grid space that 
is described by the face centered cubic packing. And 
for the RD, two sites are neighbors if and only if they 
are face adjacent; there are a total of 12 neighbors for 
each site.  
 

2.3 Proteo Modules 
A Proteo module is an electromechanical device; with 
embedded sensors, actuators and controllers. Two 
modules in a grid space can be connected if their sites 
are neighbors, which can be face, edge or vertex 
adjacent depending on the shape of modules or 
hardware design. Note that even though this definition 
does not imply that two modules are rigidly connected, 
in implementation it is normally the case. 
Communication will be established between two 
modules when they are connected. The physical 
position of a module can be uniquely described by its 
site in a grid space, e.g., its Cartesian coordinates. This 
assumes that the module’s orientation doesn’t matter; 
either the module is symmetric or its orientation does 
not change by motion. A module can move itself to one 
of its open neighbor sites by the support of another 
connected module, e.g. rolling over the other module, 
at a discrete time step.  
    A Proteo robot consists of a set of connected, 
identical, (in the sense of both hardware and software), 
modules in a grid space. A configuration of a Proteo 
robot is the set of sites occupied by the modules in the 
grid space. A Proteo robot changes its configuration by 
a series of module motions. The Proteo robots fit the 

description of “Digital Robots” (Walker and Cavallaro, 
1999). 

2.4 Motion Constraints 
When is a module in a Proteo robot able to move to 
one of its open neighbor sites? Different mechanical 
designs lead to different answers to this question. 
However, there is a set of common properties: 
 
1. A module moves relative to another module, 

denoted as a parent. There must exist a 
neighboring parent module to move. 

2. A module may only be attached to its parent while 
moving. It may not carry other modules while 
moving. 

3. The motion of the module must not collide with 
any other module. 

4. The entire group of modules must remain 
connected after the motion (assume the modules 
are connected initially). 

5. There is a fixed base module, which does not 
move. 

 
Note that gravity constraints have not yet been 
incorporated, i.e., it is assumed that the connection 
between modules is strong enough to hold modules 
together in any configuration, or that gravity is 
negligible (such as in space).  
    The first property restricts the way modules move 
around each other. The second property greatly 
simplifies planning/control problems and eases 
mechanical design. The last two properties stem from 
the assumption that one power source supplies power 
to all modules through connected modules from the 
fixed base module. The extra fixed base constraint 
makes the self-reconfiguration problem harder. 
However, the control algorithms developed later are 
applicable to Proteo robots without the fixed base 
constraint as well. 
    Property three, which varies from system to system, 
is a blocking constraint. At one extreme, if a module is 
entirely surrounded by all its neighbor modules, then 
that module cannot move. At the other extreme, if a 
module is only connected to a single module, then it is 
free to move to any of the neighboring sites supported 
by the other module. This blocking constraint describes 
the situation of a module preventing other modules 
from moving into or out of a position. Given a Proteo 
model, blocking constraints are defined as follows. Let 
M be a site in the grid space, N and B  be neighbor 
sites of M, and P be a neighbor site of both M and N 
(see Fig. 3 for a 2D illustration).  The triple 〈〈〈〈N, P, B〉〉〉〉 is 



 
 

a blocking relation for M if and only if a module at site 
B blocks the motion of a module at site M toward the 
site N with the support of a module at P.  In other 
words, the relation says that a module at site B stops a 
module at site M from moving out of its current 
location if it tries heading toward site N with the 
support at site P.  Note that blocking relations are 
defined locally and it is always the case that 〈〈〈〈N, P, N〉〉〉〉 
is a blocking relation, namely, any module at a 
neighbor site N  blocks its motion to N.  
 

 
Figure 3. A blocking relation for 2D hexagon modules 
 
Motion constraints are symmetric, i.e., if a module at 
site M cannot move to its open neighbor site N, a 
module at site N cannot move to its open neighbor site 
M. A blocking constraint can be defined via blocking 
relations: A module at site M can move to its neighbor 
site N with the support of a module at site P if: 
 
1. [Leaving Constraint] There is no module at site 

B such that 〈〈〈〈N, P, B〉〉〉〉 is a blocking relation for M, 
and 

2. [Arriving Constraint] There is no module at site 
B such that 〈〈〈〈M, P, B〉〉〉〉 is a blocking relation for N. 

 
For rigid 2D modules in Figure 3, a module at site M 
cannot move to site N if there is a module at site B 
(violates the leaving constraint) or if there is a module 
at site D (violates arriving constraint). Note that the 
blocking constraint is local in the sense that if a 
module at B blocks the motion from M to N, B is a 
neighbor to either M or N, i.e. B is a neighbor or a 
neighbor of the neighbors of M.  A site N is said to be 
within the second-order neighborhood of a site M if 
and only if N is a neighbor of M or N is a neighbor of 
the neighbors of M.   Thus, a blocking site B of M 
must be within the second-order neighborhood of M.   
    Given any pair of neighbor sites 〈〈〈〈N, P〉〉〉〉 of M, if n is 
the number of sites B such that 〈〈〈〈N, P, B〉〉〉〉 is a blocking 
relation for M, the system is said to have an n-side 

constraint. For 2D rigid hexagon modules in Figure 3, 
such as Fractum (Murata et. al, 1994), the system has 
the 3-side constraint. However, if the hexagon is 
flexible, such as the one designed in (Pamecha et. al, 
1996), i.e. deforming itself during motion, the system 
would only have the 1-side constraint. Similarly, RD-
shaped Proteo can have a 7-, 5-, 3-, or 1-side 
constraint depending on how the mechanical system is 
designed. The 7-side constraint corresponds to a fully 
rigid RD shaped module. The 5-, 3-, and 1-side 
constraints correspond to different levels of 
deformation of the RD shape during motion. While this 
paper will not discuss the mechanical design for 
various blocking constraint types, it is clear that the 
mechanical design becomes more difficult as n goes 
down, but the control system becomes easier. At the 
extreme with the 1-side constraint, a module can move 
to any open neighbor site by deforming and squeezing 
between any neighboring modules that would block a 
rigid RD module.  

 
Figure 4. An immobile configuration of 6 RD. 

 
    A subset of modules in a configuration is called 
immobile if and only if no module in that subset can 
move independent of the surrounding structure of the 
subset. A blocking constraint for a Proteo model is 
satisfiable if and only if there do not exist immobile 
subsets in any configuration. Blocking constraints that 
are not satisfiable can lead to unsolvable 
reconfiguration problems. For example, the 3-side 
constraint for the 2D hexagon model is satisfiable. 
However, the 7-side constraint of the RD model is not 
satisfiable: if six RD’s are brought together at a 
common vertex as shown in Figure 4, no RD can 
move. Since motion constraints are symmetric, the 
inverse is also the case: modules cannot move into this 
subset of any configuration. This subset is 
encompassed within many possible configurations, 
most notably any solid configuration with thickness 
greater than three RD modules. This result greatly 
restricts the set of configurations that can be built by 
the rigid RD-shaped Proteo model. However, if a little 
deformation is allowed during motion, resulting in the 
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5-side constraint, there are no configurations that are 
immobile due to blocking constraints alone.  
     However, satisfiable blocking constraints do not 
imply that all configurations are mobile. An example of 
a satisfiable blocking constraint is Murata’s 3D Self-
Reconfigurable Structure (Murata et. al, 1998), which 
is in the 3D-grid space Z3 described by simple cubic 
packing. A module can only move to an edge adjacent 
neighbor site using a face adjacent neighbor as the 
pivot support as in Figure 5(a). Note that even though 
the pivot (parent) module rotates 90 degrees, it is 
considered stationary in this model since it does not 
move to another position in the grid and rotations 
result in functionally identical orientations due to its 
symmetry. The system has a 2-side constraint. Even 
though the blocking constraint is satisfiable, an 
immobile configuration projected in 2D is shown in 
Figure 5. However, it is not an immobile subset since  

 
(a) 

 
(b) 

 
Figure 5. (a) A step move in Murata’s 3D Self-

Reconfigurable Structure (b) Immobile configuration 
 
adding any module to the subset results in a mobile 
configuration. 
    Note that in general, motion constraints are not 
local. The fourth property, connectivity, is one example 
of a global constraint. A system with a satisfiable 
blocking constraint can also have immobile 
configurations due to a combination with other motion 
constraints, such as connectivity. For example, 
(Nguyen et. al, 2000) showed a configuration of 2D 

hexagon with 3-side constraint in an immobile state, 
due to the combination of the blocking constraint, the 
fixed base constraint and the connectivity constraint. 
    If more than one module is allowed to move at one 
time, there are further motion constraints: 
 
1. No two modules move to the same open site. 
2. Parents cannot move while supporting the motion 

of other modules. 
3. No module becomes a blocking module for a 

moving module. 
 
A single step motion of a Proteo robot is a set of 
simultaneous single step moves that satisfy all the 
motion constraints. 
 

2.5 Reconfiguration Problems 
 
The reconfiguration problem for a Proteo robot is 
defined as follows: Given an initial configuration I and 
a final configuration F, find a series of single step 
motions that leads from I to F. Even though related, 
two different kinds of reconfiguration problems, 
reconfiguration motion planning problems and 
reconfiguration motion control problems, shall be 
defined. For motion planning, the inputs are the initial 
and final configurations I and F, and the output is a 
series of single motion steps that leads from I to F. For 
motion control, the inputs are the current and final 
configurations, as well as the state of the control, and 
the output is a single step motion that moves towards 
the final configuration. 
    At one extreme, a motion planner may produce the 
whole series of steps off-line and a motion controller 
may follow the steps open loop. At the other extreme, a 
motion controller may determine each of the steps 
sequentially on-line. Between these extremes, a motion 
planner can be used inside a motion controller to 
obtain a partial or complete sequence to the final 
configuration in order to assure the best move for the 
next step (e.g., optimal or guaranteed success). The 
controller then follows the first few steps until a new 
plan is produced.  
    On the other hand, a motion controller can also 
produce a motion plan by recording all the steps to the 
final reconfiguration. However, it is most likely that 
such a “plan” is not optimal, i.e., within the minimal 
number of steps or moves.  Nevertheless, as shown by 
many people, (Latombe, 1991) for example, optimal 
planning of the motion of n robots, or in this case 
modules, moving at the same time from one 

pivot 



 
 

configuration to another, is intractable, as the search 
space is exponential in n. 
    This paper focuses on motion control, in particular, 
distributed motion control of the reconfiguration 
problem. The purpose of studying distributed control is 
to push the idea of homogenous systems to an extreme, 
so that all the modules not only have the same 
hardware, but also have the same software. 

3. Distributed Control of Reconfiguration 

In distributed control of Proteo robots, all modules 
have an identical controller and each controller decides 
where to move, depending on its current site, its 
current state, and states of neighbors determined via 
local communication. This includes limited sensing to 
determine collision and disconnection detection.  
    Reconfiguration problems are hard. Distributed 
control for self-reconfigurations is harder. There are 
several specific issues for distributed control: 
 
1. Stability:  The control law in each controller 

locally has to confirm to some type of global 
stability. The system should stop motion when its 
final configuration is reached.  

2. Local minima: The problem of local minima 
exists in most local control laws. Extra care must 
be taken to minimize the factor of local minima, 
such as adding randomness or turbulence. 

3. Overcrowding: Modules sometimes overcrowd in 
an area, blocking the motion of each other.  Extra 
communication has to be established to alleviate 
this situation. 

 
This section defines the formal model for this class of 
control, and develops a type of distributed control with 
a global goal ordering. Three instances of such control 
are illustrated and their properties are discussed. 
Finally performance results of these control algorithms 
are shown. 

3.1 Control Model 
A distributed control model for Proteo robots is 
defined as follows:  
 
1. All modules have identical controllers. 
2. Each controller knows the final configuration, its 

own site and has a set of states including 
information about the global configuration. 

3. At each time step, two modules can exchange state 
information when they are connected. 

4. Each controller decides where to move according 
to its local information and its incomplete or 
delayed global information. 

5. If a move is not achieved due to sensed violation 
of global motion constraints, the controller will be 
notified (via sensors) and will be allowed to revise 
its output as many times as needed. 

 
The sensed motion constraint violations include: 
 
1. There is a module that is moving to the same 

destination site. 
2. Its parent module is moving. 
3. There is a moving module that becomes a 

blocking module. 
4. The module to be moved will divide the 

system/robot into two disconnected parts. 
 
Condition 1,2 or 3 happens only if more than one 
module moves at the same time. 
    In this model, communication can be used to build 
the global state of the configuration as messages may 
be passed from module to module. If nothing is moved 
for more than N steps, where N is the number of 
modules, and every module communicates its site 
information and passes the site information it has 
received, every module is able to know the sites of all 
the other modules. In other words, if each module 
communicates N times before making a decision for 
moving, each module would have the global state 
information for making that decision. In real situations, 
modules would not necessarily be restricted to 
communicate only once per motion step as a 
mechanical move is normally much slower than an 
electronic data move. However, letting N modules 
communicate N times when N is very large would still 
slow down the reconfiguration process. Considering 
that every step of communication time takes O(N) 
since the size of the information is O(N), N steps 
would take O(N2). In practice, the number of 
communication steps for a move shall be set to a 
constant n for n much less than N, depending on the 
time for making one step motion mechanically. 
    For each control cycle, the controller works as 
shown in Figure 6. The “Reset” phase is used to 
synchronize all the initial information among 
distributed controllers before communication. During 
the “Communication” phase a module exchanges 
information with its connected modules. There can be 
n, where n is greater than or equal to 1 and less than or 
equal to the number of modules, number of 
communication steps before a mechanical move. Then, 
in the “Decision” phase it computes the next moving 



 
 

direction according to its current information. During 
the “CanMove” phase, it checks, via sensors, whether 
or not motion constraints are satisfied. The module 
enters the “Revise” phase and re-computes the next 
possible move when a move cannot be made due to 
unforeseen (or global) motion constraints. 
 

 
 
 

Figure 6.  Flowchart of each distributed controller for one 
step motion 

3.2 Goal Ordering 
A goal is a site in the final configuration. The 
distributed control for the reconfiguration problem 
presented here is based on goal ordering: a partial 
order defined on a grid space that will be used to 
determine the order for filling goals of any final 
configuration. Let < be a partial order defined on the 
grid space.  If L1 and L2 are two sites in the grid space 
and (L1 < L2), L1 will be filled before L2, given L1 and 
L2 are goals; L1 has lower order (or higher priority) 
than L2 and L2 has higher order (or lower priority) than 
L1. 
 
There are two purposes for goal ordering:  

 
1. To enforce some order for filling the goals so that 

once a module fills a goal in the order, it can stay 
there forever without blocking other modules 
moving to the rest of the unfilled goals. 

2. To enable local reasoning about global 
information so that communication can be kept 
minimum. 

 
Incorporating the blocking constraint and the fixed 
base constraint, an ordering defined on the grid space 
is called a goal ordering if and only if it satisfies the 
following conditions: 
 
1. The site of the fixed base belongs to the set of 

sites that have the lowest order. 
2. For an n-side constraint Proteo model, at least n 

neighbor sites have higher order than the given 
site. 

3. There must exist a parent P and a neighbor site N 
pair 〈N, P〉 of any given site M whose set of 
blocking neighbors is a subset of neighbor sites 
that have higher order than M.  

 
An example goal ordering follows for an RD shaped 
Proteo model with the 5-side constraint. An ordering 
can be defined via a single-valued function H as 
follows: let H(L) = |yL - y0 + zL – z0| where (x0, y0, z0) is 
the base coordinates, and L1 < L2 if and only if H(L1)  
< H(L2). Without loss of generality, we can assume 
that the fixed base is at the origin, (0, 0, 0), and L is at 
(x, y, z), so that H(L) = |y + z|. 
 
Proposition 1. The ordering defined above is a goal 
ordering for RD with the 5-side constraint. 
 
Proof:   For any site L with coordinates (x,y,z), there 
are 12 neighbor sites at (x+1, y+1, z), (x-1, y+1, z), (x-
1, y-1, z), (x+1, y-1,z),  (x+1, y, z+1), (x, y+1, z+1), (x-
1, y, z+1), (x, y-1, z+1), (x+1, y, z-1), (x, y+1, z-1), (x-
1, y, z-1), (x, y-1, z-1). If L is the fixed base, H(L) = 0, 
therefore, the fixed base has the lowest order. Since 
H(L) is an absolute value, there are two cases for H(L) 
> 0. For y + z > 0, (x+1, y+1, z), (x-1, y+1, z), (x+1, y, 
z+1), (x-1, y, z+1) and (x, y+1, z+1) is the set that has 
higher order. These sites correspond to the blocking 
neighbors of four parent and neighbor pairs, one of 
which is 〈〈〈〈N=(x+1, y-1, z), P=(x+1,y, z+1)〉〉〉〉.  Similarly, 
for y + z < 0, (x+1, y-1, z), (x-1, y-1, z), (x+1, y, z-1), 
(x-1, y, z-1) and (x, y-1, z-1) is the set that has higher 
order and are the blocking neighbors of four parent and 
neighbor pairs, one of which is 〈〈〈〈N=(x+1,y, z+1), 
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P=(x+1, y-1, z)〉〉〉〉 (note P and N are swapped from the 
previous case). For any given site L with H(L) = 0, 
both cases apply and there are 10 ≥ 5 neighbor sites 
with higher order than the given site. For all other 
cases (H(L) > 0), there are exactly 5 neighbor sites 
with higher order than the given site.  # 
 
Proposition 2. If G is a goal ordering for an n-side 
constraint, G is also a goal ordering for an m-side 
constraint for all m < n whose set of blocking 
relations are a subset. 
 
Proof:   If G is a goal ordering for an n-side constraint, 
it satisfies the conditions for the goal ordering. If m < 
n, all the conditions are still satisfied for an m-side 
constraint if its blocking relations are a subset.  # 
    Readers are encouraged to verify that there is no 
goal ordering for the RD with the 7-side constraint. In 
general, the following proposition holds. 
 
Proposition 3. A goal ordering for a Proteo model 
exists if and only if its blocking constraints are 
satisfiable.  
 
Proof:    A goal ordering imposes a constraint on the 
order of motions to fill a configuration. If a blocking 
constraint is satisfiable, then there exists a goal 
ordering, since one can always start with the largest 
configuration with all the sites occupied by modules 
and define an order by assigning the highest order to 
one of the modules that can move, removing this 
module and assigning the second highest order to one 
of the modules that can move in the remaining 
configuration, and so forth. Conversely, if there is a 
goal ordering, there does not exist an immobile subset 
in any configuration due to the blocking constraints, 
since a module with the highest order, which has no 
blocking neighbors with respect to a parent, can always 
move, if the parent exists.  # 
    A goal is called filled, if and only if a stabilized 
module occupies it. A goal is called constrained if 
filling it would block other goals from being filled. 
Specifically, goal G is constrained if and only if there 
is an unfilled goal G’, G’ < G, which is within the 
second-order neighborhood of G. A goal that is not 
constrained is called unconstrained. The unconstrained 
property of a goal can be calculated using the goal 
ordering and the information on the filled goals. Note 
that “filled” is a global property, but “unconstrained” is 
a local property, dependent only on the state of nearby 
sites. 

    A distributed controller based on the goal ordering 
can be constructed as follows: each controller has an 
array named “filled” and an array named 
“unconstrained”, indexed by goals in the final 
configuration. A module will no longer move as soon 
as it comes to an unconstrained goal site.  An element 
in the “filled” array is set as soon as the corresponding 
unconstrained goal is filled with a module. The “filled” 
arrays are propagated every step via communication by 
updating connected neighboring modules.  In addition, 
more filled goals can be deduced from the goal 
ordering, i.e., whenever a goal is filled, all its neighbor 
sites with lower ordering must also have been filled. At 
any time, the “filled” array is a module’s internal 
snapshot of the global configuration. At the same time, 
elements in the “unconstrained” array will be deduced 
using the goal ordering and the states of the “filled” 
array.  The procedure implies the following 
consequences: 
 
1. Both “filled” and “unconstrained” arrays are 

monotonic in time, i.e., when an element is set, it 
is forever set.  

2. Both “filled” and “unconstrained” arrays are 
conservative, i.e., if an element in the “filled” (or 
“unconstrained”) array is set, it is guaranteed that 
the goal is actually filled (or unconstrained). 

3. A “filled” goal is an “unconstrained” goal, i.e. the 
“filled” sites are a subset of the “unconstrained” 
sites. 

 
The system has a set of control modes that are listed in 
the next section; one of the modes is “goal-reached” 
which indicates that the module has occupied an 
unconstrained goal and will no longer move. If the 
module is not in the “goal-reached” mode, the module 
will decide how to move by ordering the set of open 
neighbor sites according to some “neighbor ordering” 
criteria. The lowest in the ordering that satisfies local 
motion constraints will have the highest priority and be 
chosen first, and the rest will be tried out in order if 
revision is required. 
    The algorithm stops when all the elements in the 
“filled” array are set.  Because the “filled” array is 
conservative and monotonic, the distributed control 
based on the goal ordering is “stable” in the sense that 
the number of “unfilled” goals will not increase. 
However, it does not guarantee that the final 
configuration will be achieved. 

3.3 Goal-Ordering based Control Algorithms 
This section first discusses two types of methods 
corresponding to two different neighbor-ordering 



 
 

strategies. The properties of the algorithms are 
analyzed and a hybrid method is then proposed. 

3.3.1 Distanced-based Method 
The distance-based method uses the “distance” to 
unconstrained unfilled goals as the major measure for 
ordering open neighbor sites. Euclidean distance is 
used in the algorithm. However, any other distance 
metric should work about the same. Performance may 
vary by using different metrics (Pamecha et. al, 1997). 
Each module has a variable “target”, which is the 
closest unconstrained unfilled goal to the current 
module according to the distance measure. Note that 
two or more modules can have the same target. Once 
the target is filled, a new target will be chosen.  
    Some heuristics have to be used to solve the problem 
of overcrowding, i.e., too many modules are around a 
target site, blocking each other from the target site. The 
problem is solved using the principle of  “competition 
and cooperation”. Competition takes place when 
modules are far away from the target site, and 
cooperation takes place when more than one module is 
a neighbor of the same target. By reserving the target 
for only one of these modules and redirecting the rest 
to other targets, overcrowding will be relieved.  
    In addition to the “goal-reached” mode, there are 
four other modes in this method: namely, “no-goal”, 
“reserve-goal”, “assist-goal” and “normal-goal”. 
 
1. “no-goal”: every module is in “no-goal” mode 

initially, and will become “no-goal” again 
whenever its target is filled, or reserved by other 
modules. In this mode, a new target is chosen 
from the closest unconstrained unfilled goals 
which have not been reserved by others at that 
time. If no such target exists, i.e., all the 
unconstrained goals are either filled or reserved by 
others at the time, a dummy goal, which is outside 
of the final configuration, will be chosen. The 
dummy goal can be random, or any site just 
outside of the edge of the goal configuration. In 
our experiments, we first find M as the goal site 
with the largest H, where H is defined as |y+z|. We 
then use D = M + (0,4,4) if (y+z)>0 and D = M + 
(0,-4,-4) if (y+z)<0. This helps to relieve 
overcrowding situations by allowing modules with 
nowhere to go to move away, so that the goals can 
be filled by modules that have reserved them. 

 
2. “reserve-goal”: a module at site M will reserve its 

target goal T, if and only if, 
a) T is its neighbor,   

b) T < M, and 
c) there exists another goal G, a neighbor of T, 

with G < T.  
If a module satisfies these three criteria, it records 
the time that it reserved the goal. The module then 
keeps this reservation for some steps, or until it 
communicates with a neighbor that reserved the 
same goal at an earlier time. This reservation 
information is then propagated from its neighbors 
to other modules moving toward this target. Any 
other module moving towards the same goal is 
forced to choose a different goal. By forcing other 
modules to choose other goals, the module 
making the reservation should have more room to 
move. According to the goal ordering constraint, 
G must have been filled. If G is a neighbor of M,  
the module can then use G as its parent, rolling 
over G to fill is target T. 

3. “assist-goal”: if a module M has reserved a target 
T, but there is no filled goal G that is a neighbor 
of  M,  M will raise an assistance-required flag.  If 
a connected module is also moving toward T, then 
instead of choosing another goal, it assumes the 
“assist-goal” mode and assists the reserving 
module M by moving to a neighbor site P 
satisfying P < T.  The reserving module can then 
lower the assistance-required flag and roll over the 
assistant to reach its goal. 

4. “normal-goal”: the system is in “normal-goal” 
mode if it has a target. The mode will switch to 
“no-goal”, “reserve-goal”, or “assist-goal” 
whenever the corresponding conditions are 
satisfied. 

 
The transition between these modes is depicted in 
Figure 7. 

    For all modes, except “goal-reached”, the control 
will decide which open neighbor site to move to, 
according to some ordering with respect to its target. 
Neighbor sites are ordered in terms of its connectivity 
and its distance to the target. A site that is a neighbor 
of a filled goal or is a neighbor of at least two modules 
is ranked with a higher priority. This is called the 
connectivity ranking. If this ranking is the same for two 
neighbor sites, the distance to the target will be used 
for ranking; the one with shorter distance is ranked 
with a higher priority. If both factors are the same, then 
the two sites are ordered randomly. The modules tend 
to stay together rather than spread out in long thin 
chains toward goals, due to the connectivity criterion. 
The lack of long chains results in a significant decrease 



 
 

in the number of local minima for the distance 
heuristic. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. State-transition for distance-based control 
 
 

3.3.2 Heat-based Method 
The heat based method uses a simulated “temperature” 
as a measure for ordering open neighbor sites, in which 
unfilled unconstrained goals are heat sources and non-
goal-reached modules are heat sinks. Unfilled 
unconstrained goals produce heat (increase 
temperature) at every step and non-goal-reached 
modules consume heat (decrease temperature) at every 
step. Heat sources propagate portions of the heat 
through contacting modules. All modules propagate 
heat to their neighbor modules. This propagation is 
heat preserving, i.e., the heat added to a neighbor 
module is subtracted from the given module.  
    In this control, each module has a state variable 
“temperature” which is set to 0 initially. In addition, a 
“goal temperature” array is updated at every step 
locally. During the “Reset” phase (see Figure 3.1), each 
module that is not yet “goal-reached” will decrease its 
temperature by one unit, and each unfilled 
unconstrained goal will increase its temperature by one 
unit. During the “Communication” phase, heat is 
propagated through modules. Formally, let T(t) be the 
temperature of a given module at time t, and n be the 
number of neighbor sites for the grid space (12 in the 
case of RD): 
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where Ti’s are temperatures of connected modules and 
Tg’s are temperatures of neighboring unfilled goals. 
The result is, the modules closer to the unfilled 
unconstrained goals are warmer than the modules far 
away.  During the decision making phase, the 

temperatures of open neighbor sites are estimated by 
averaging the temperatures of connected modules. 
Open neighbor sites are ordered with the higher 
temperature ranked higher priority. If the temperatures 
for two open neighbor sites are the same, the two sites 
are ordered randomly. 

3.3.3 Problems and Solutions 
Neither of the methods discussed above guarantee the 
reachability of final configurations, even though in 
practice, they do reach final configurations most of the 
time. Some of the unsuccessful cases are due to the 
properties of final configurations and some are inherent 
to the properties of the methods.  
    Final configurations that are too dense (e.g. a big 
solid ball) or too sparse (e.g. a hollow ball of one 
module thick) are hard to achieve. For the dense case, 
modules tend to suffer from overcrowding. For the 
sparse case, there are not enough modules to support  
rolling over each other.  
    Another type of final configuration that is hard to 
achieve has structures with partitioned (e.g., a hollow 
ball, or any structure that encloses spaces) or concave 
(e.g., a cup) spaces. For example, a moving module 
inside the bottom of a cup will be stuck and unable to 
fill a goal outside the bottom of the cup (see Fig. 8(a)). 
Based on the assumption that the final configuration is 
known to every module, the problem can be solved by 
assigning exclusive areas (such as the inside of a 
hollow ball) outside the final configuration and 
keeping modules from moving into these areas in the 
control strategy. This strategy no longer works if there 
are branches to be filled inside a hollow ball.  

    There are also final configurations with “black holes”. A 
site that is not a member of a configuration is called an 
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exterior site of the configuration if and only if it is a 
neighbor of a site in the configuration. An exterior site of a 
final configuration is a black hole if a module in the site 
cannot move when its neighbors are filled. An example of a 
final configuration with a black hole is a plane with an 
interior site removed (see Fig. 8(b)). Final configurations 
with black holes may trap moving modules and keep them 
from reaching their final goals. The strategy of assigning 
exclusive sites can be used if black holes are identified a 
priori.  
    Because the decision making in these methods is local in 
both space (within connected modules) and time (current 
state), local minima can occur.  To alleviate this, two 
strategies have been taken for ordering open neighbor sites: 
 
1. added randomness: open neighbor sites are ordered 
randomly given that the other criteria are the same. 
2. imposed noise: the best open neighbor site is 
skipped and the second best neighbor site is chosen from 
time to time to avoid being trapped in the same situation. 
 
A significant difference between the distance-based method 
and the heat-based method is that the heat-based method 
considers the module motion along the surface of the 
configuration, while the distance-based method assumes 
modules can move freely in space. One unsolved problem 
with the distance-based control is the formation of long 
chains of modules where the target of the end module is 
past the end of the chain (see Fig. 8(c)). The chains may 
not be deformed and the system would be stuck without 
further progress. The problem is hard to solve within this 
method. On the other hand, the heat-based method solves 
the long chain problem naturally, since the ends of chains 
tend to get colder and colder while the body that contacts 
unfilled goals are getting warmer and warmer. Therefore, 
modules would move closer to the body. However, the 
heat-based method tends to be much slower, since the 
directions of the goals are blurred with local temperatures 
and propagation of temperatures has a large delay. In fact, 
it is hard for a module to find the right direction to move 
when it is far away from goals. 

 

(a) 

 

 
 (b) 

 
(c) 

 
Figure 8. Hard situations for reconfigurations (a) goal with 
partitioned spaces (b) goal with black hole (c) long chain; 

where sites in black: goal-reached modules; in gray: moving 
module; in white: empty goal site 

3.3.4 Combined Method 
Based on these observations, a method combing both 
methods is developed. In the combined method, the 
control starts with the distance-based method, and 
switches to the other method when the system seems 
stuck. The key problem in this method is switching 
simultaneously in every module’s controller without 
using some instantaneous global communication. For 
the combined method, every module has an extra state, 
named “stuck-time”, which is used to estimate the 
number of steps since the last goal was filled globally. 
If a module occupies an unfilled unconstrained goal, 
and its “stuck-time” is less than a preset value m, its 
“stuck-time” is reset to 0. In the “Reset” phase, the 
“stuck-time” is increased by one. During the 
“Communication” phase, the “stuck-time” of each 
neighbor is communicated and the smallest “stuck-
time” among them is set to be the new “stuck-time”. 
Thus, the minimum “stuck-time” is propagated to all 
the modules. 
    Let D be the maximum distance between two 
modules at any time. The following proposition holds. 



 
 

 
Proposition 4. If the “stuck-time” of one module is 
beyond  D + m, the “stuck-time” of every module is 
beyond D + m. 
 
Proof:    The system is said to have progress if and 
only if there is a module whose “stuck-time” has just 
been reset to 0. Since m is the threshold that disallows 
a module to reset its “stuck-time” to 0, if there is no 
progress for m steps, the system will not have any 
further progress. D is the maximum number of steps for 
a new stuck-time (or any other piece of information) to 
be propagated to all modules since modules 
communicate once per step and communication 
spreads to all neighbors locally at each step. If the 
“stuck-time” of one module is beyond D + m, then 
within the last D + m steps, there has been no progress; 
the last progress would have been propagated to every 
module before the last m steps. Therefore, the “stuck-
time” of every module is beyond D + m.    # 
    From this property, D + m can be used as a 
threshold to switch from one method to another, since 
it guarantees that all the modules switch at the same 
time. In the worst case, D is equal to the number of 
modules N. In practice, m can be set to any value 
greater or equal to 1.   

3.4 Results and Performance 
 
(Chirikjian et. al, 1996) presented an analysis on 
bounds for self-reconfiguration of (2D) metamorphic 
robots, in which the maximal simply-connected overlap 
is defined to be a maximum connected subset of the 

overlap between the current and the final 
configurations without loops. The same analysis for 
upper bounds can be carried out for Proteo robots, 
where “maximal simply-connected overlap” is replaced 
by “maximal constraint-free connected overlap”. A set 
of modules is “constraint-free connected” if and only if 
any module in an exterior site of the set can move to 
any other exterior site via one or more steps, without 
violating motion constraints. Clearly the minimum 
such overlap is just the fixed base. Similarly, a lower 
bound on the total number of moves is given by an 
optimal assignment between the initial and final 
configurations, if there is only one module moving at a 
time.  
    These bounds only give references on how well a 
reconfiguration algorithm works in general. For 
distributed control with only local or delayed 
information, it is hard to guarantee the steps do not 
exceed the upper bound for all initial and final 
configurations. In fact, local minima may occur and the 
system may be stuck without being able to achieve the 
final configuration. 
    Various test cases are simulated, using the RD 
shaped 5-side constraint Proteo model with the initial 
configuration as a one module thick rectangular plane. 
Table 1 shows the number of time steps, one step 
communication per move, of the three methods, 
distance-based, heat-based and combined, for four 
types of final configurations, flat disk, solid ball, 
hollow ball and cup, with four different numbers of 
modules. The best algorithms for each case is marked 
in bond.     

 
Disk(57,129,221,441) Sball(55,135,249,429) 

  

Hball(42,114,302,450)

 

Cup(43,110,234,443)  

D H C D H C D H C D H C 
Small 116 468 116 125 170 125 65 220 65 62 276 62 
Small-Medium 255 1644 255 ∞  499 574 312 3730 312 361 435 361 
Medium-Large 320 4329 320 ∞  1327 807 952 3186 952 323 2211 323 
Large 402 ∞  402 ∞  ∞  2105 705 3727 705 537 ∞  537 

 
Table 1. The number of steps for reconfiguration of various shapes and sizes, starting from a initial plane, where ∞ denotes 
either stuck or steps greater than 5000. The numbers in ( ) are actual number of modules for each final shape corresponding to 
Small, Small-Medium, Medium-Large and Large, respectively. D: Distance-based, H: Heat-based, C: Combined 

 



 
 

 
The results show that the algorithms tend to take linear 
time with respect to the number of modules, if the best 
method is used. In the cases where the number of time 
steps is significantly large with respect to the linear 
curve, it is likely that more than 90 percent of goals are 
filled within less than 50 percent of time. Figure 8 
shows how the overlap metric varies with time for the 
final configuration of a hollow ball with 302 modules, 
where the metric is defined by the percentage of non-
overlap modules between the current and final 
configurations. 
 

 
Figure 8. Reconfiguration process for a hollow ball 

 
From the experiments, both the distance-based and the 
heat-based methods can get stuck: the distance-based 
method more likely gets stuck in a long chain, and the 
heat-based method gets stuck in a position where heat 
is balanced in all directions. Also, normally the heat-
based method is slower than the distance-based 
method.  

4. Conclusion and Future Work 

We have presented a class of distributed control 
methods for 3D metamorphic modular robot 
reconfigurations. The methods apply to a class of 
metamorphic robots called Proteo whose 
characteristics have been formally defined. The 
properties of such methods are discussed and 
experimental results are shown. These methods have 
been tested in a simulation environment, which is 
available in the modular robots web site: 
http://www.parc.xerox.com/modrobots/Proteo/simulati
on. 

4.1 Software Readiness 
The control algorithms are developed and tested with 
the simulation environment. The control structure 
restricts the algorithm to use local information only. 
Even though the simulation does not run on “parallel 
processors”, the algorithms are totally distributed and 
ready to be implemented for embedded processors. 

4.2 Hardware Readiness 
The prototype of the RD shaped Proteo modules is 
being designed. Due to the difficulty in obtaining the 
actuation mechanism, the first prototype will be 
“Digital Clay”, with embedded sensing and 
communication, but with no actuation.  

4.3 Future Research 
The research on distributed control of 3D 
metamorphosis is far from finished. The following is a 
list of future work that is related to the content of this 
paper: 
 
1. define or use goal ordering for blocking 

constraints that are not satisfiable, 
2. choose different goal orderings for different types 

of initial and final configuration, 
3. calculate efficiently upper and lower bounds of 

reconfiguration steps,  
4. decompose a shape into a set of simple ones, 

design reconfiguration algorithms for each simple 
shape, and then combine the steps, 

5. study special cases of configurations and control 
strategies that guarantees the goal achievement, 
and 

6. incorporate gravity constraints into the model. 
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