

Distributed Control for 3D Metamorphosis

MARK YIM, YING ZHANG, JOHN LAMPING, ERIC MAO*
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304

{yim, yzhang}@parc.xerox.com

lamping@acm.org
ericmao@robotics.stanford.edu

Abstract. In this paper, we define Proteo as a class of three-dimensional (3D) metamorphic robotic system capable
of approximating arbitrary 3D shapes by utilizing repeated modules. Each Proteo module contains embedded
sensors, actuators and a controller, and each resides in a 3D grid space. A module can move itself to one of its open
neighbor sites under certain motion constraints. Distributed control for the self-reconfiguration of such robots is an
interesting and challenging problem. We present a class of distributed control algorithms for the reconfiguration of
Proteo robots based on the “goal-ordering” mechanism. Performance results are shown for experiments of these
algorithms in a simulation environment, and the properties of these algorithms are analyzed.

Keywords: metamorphic robots, distributed control of shape reconfiguration, motion constraints, goal ordering

* author’s current address: Department of Computer Science, Stanford University, Stanford, CA 94305

1. Introduction and Related Work

Metamorphic robotic systems were originally proposed
and studied in (Chirikjian, 1993) and (Murata et. al,
1994), where two types of two-dimensional (2D)
metamorphic robotic systems were developed. A
metamorphic robotic system (Chirikjian, 1993) is a
collection of independently controlled mechatronic
modules capable of approximating arbitrary shape,
each of which has the ability to connect, disconnect
and climb over adjacent modules. Metamorphic robotic
systems share the following properties:

• [Uniformity] All modules have the same structure

mechanically and electronically, typically the
physical structure of each module has some
symmetry as well.

• [Connectivity] Modules are connected at all
times, so the collection of modules acts as a single
robotic system.

• [Mobility] Each module has the ability to
maneuver, so that the system is self-
reconfigurable.

• [Locality] Each module is embedded with a local
processor; communication occurs between
adjacent modules.

This type of homogeneous system is highly advocated
(Murata et. al, 1994) for its robustness, adaptability
and mass production. Possible applications range from
flexible manipulation to emergent structures and
electronic sculptures.
 In addition to these metamorphic systems, other
work in modular reconfigurable robots include
(Fukuda and Kawauchi, 1990), (Paredis and Khosla,
1993), (Yim, 1994), (Hamlin and Sanderson, 1996),
(Will et al, 1999) and (Unsal and Khosla, 2000). The
earlier of these works provided the impetus and
physical proof of concept for modular reconfigurable
systems. Self-reconfigurability that comes from
metamorphic systems extends the autonomous
versatility of these systems.

1.1 Overview

The problem of self-reconfiguration is to rearrange the
modules to change from one overall shape to another,
without external assistance. This paper studies methods
for distributed self-reconfiguration control of three-
dimensional (3D) metamorphic robotic systems.
 In order to make the methods general, a generic
model for a class of metamorphic robotic systems,
called Proteo, is defined. A Proteo model includes the
configuration space in which the modules reside and
constraints on how modules can move. The model is

general enough to accommodate a large class of
metamorphic robots with different geometry and
motion constraints. It is essentially an extension of the
model developed in (Chirikjian et. al, 1996), with the
emphasis on motion constraints. The distributed
reconfiguration control algorithms in this paper are
developed for the Proteo model.
 The challenge for distributed control for self-
reconfiguration is that each module must decide its
next move based on the desired final configuration and
only its local state, which includes delayed or
incomplete global information obtained via
communication from other modules.
 The key behind the algorithms presented is the
“ordered-goal” constraint, i.e. locations in the final
configuration are filled in a pre-defined globally known
partial order. The use of the “ordered-goal” constraint
ensures some kind of monotonicity or stability of the
distributed system and also greatly reduces the
communication time for each module to obtain the
global information it needs about the system.
 Three algorithms based on the “ordered-goal”
constraint are developed. One is distance-based, where
modules move, generally, toward the closest unfilled
goal. Another is heat-based; it simulates a heat flow
from goals to moving modules, and modules move,
generally, along the temperature gradient. The third is
a hybrid of those two, which greatly reduces local
minima compared to the individual methods. All of
these distributed algorithms are parallel, both in the
sense that all modules compute in parallel and in the
sense that several modules may move at the same time.
All the algorithms work for any metamorphic robotic
system that fits the definition of the Proteo model.
 The control algorithms were tested in a simulation
environment. While none of the methods guarantees to
fully reach final configurations, our testing results
show that the hybrid method does outperform the other
two in terms of the 100% goal completion. Further,
the observed configuration times scale approximately
linearly over an order of magnitude range of the
number of modules.
 The simulation environment, written in Java with
Java 3D, supports the general Proteo model with
motion constraints and allows one to “plug and play”
any control algorithm derived from a base control
structure. The system has been used to study
biologically inspired systems and emergent structures
(Bojinov et. al, 2000).

1.2 Related Work

Much work on metamorphic robots has been done in
the past five years, in both design and motion
control/planning. Existing 2D metamorphic robots
include Hexagonal Modules (Pamecha et. al, 1996),
Fractum (Murata et. al, 1994) and 2D Self-Organizing
Collective Robots (Hosokawa et. al, 1998). Existing
3D metamorphic robots include 3D Self-
Reconfigurable Structure (Murata et. al, 1998),
Robotic Molecule (Kotay et. al, 1998), and Crystalline
Modules (Rus and Vona, 1999, 2000).
 Both motion planning and distributed control of
such metamorphic robots have been studied.
 For motion planning, (Pamecha et. al, 1997)
presented a technique of simulated annealing to drive
the reconfiguration process with configuration metrics
as cost functions. Performance associated with
different configuration metrics was also analyzed.
Since finding an optimal motion sequence is believed
to be computationally intractable, (Chirikjian et. al,
1996) presented methods for computing upper and
lower bounds for such sequences, which can be used as
guidance for motion planning.
 For distributed control, (Murata et. al, 1994) used a
diffusion-like process with a local type fitness measure
to obtain a movability strategy, while the actual motion
is random. The randomness of motion makes
convergence of the system problematic. A distributed
simulated annealing approach was described in
(Murata et. al, 1998), however, the system performed
well only when there was a small number of modules
(up to 20). Even though there is no fundamental
difference, most of the planning and control algorithms
previously described have only one module move per
time step.
 In general, there have been no algorithms or control
strategies that guarantee 100% completion of arbitrary
goal configurations with motion constraints. Two
approaches have been investigated in literatures. One is
to use meta-modules, i.e., a collection of modules as
one unit to move around. Examples of this approach
were discussed in (Rus and Vona, 1999) and (Nguyen
et. al, 2000). Another is to restrict the space of
configurations. (Nguyen et. al, 2000) presented a
theoretical proof for a 2D Proteo model, which can be
extended to 3D as well.
 Most planning and control strategies are for self-
reconfiguration with the final configuration specified in
some form. Emergent structures is another interesting
approach, i.e., final configurations are not specified
explicitly but are emergent as the result of applying
local control rules. (Hosokawa et. al, 1998) developed

control rules for their 2D Self-Organizing Collective
Robots to traverse a vertical plane. (Bojinov et. al,
2000) generated several biologically inspired control
laws to “grow” stable structures for a 3D Proteo
model. With this approach, even though the specific
shape of the resulting structure is non-deterministic,
the emergent structure has the desired functionality.

2. The Proteo Model and Motion Constraints

Proteo is a class of metamorphic robots that is
composed of uniformly shaped modules that normally
occupy individual spaces on a uniform discrete grid or
lattice. Proteo treats motions from one grid position to
another as discrete steps. A single discrete step of a
Proteo module is constrained to its open neighbor sites
in the lattice, with the support of one of its connected
modules.

2.1 Example
An example of a Proteo module has the shape of a
rhombic dodecahedron (RD), a 12-sided dual uniform
polyhedron that is a kind of 3D analog of a hexagon
(see Fig. 1(a)). An RD module can move itself by
rolling around one of its edges shared with another
module (see Fig. 1(b)).

(a) (b)

Figure 1. (a) A rhombic dodecahedron (RD)
 (b) Two RD’s with two faces mated

The RD shape has several good properties:

1. An RD is isohedral (i.e., all faces are alike). This

isohedral property simplifies manufacture. One
advantage to repeating modules is the ability to
batch fabricate, minimizing the unit cost. In
addition, each module can be made of repeating
parts. For example, each polyhedron is made of
faces, each face made of edges and each edge
made of vertices. If the polyhedron is an
isohedron with uniform faces like the rhombic

dodecahedron, then batch fabrication can be
applied at the face level and the edge level as well.

2. Modules of RD shape are packed so they fill space
with minimal gaps. When two faces of two
identical RD’s are aligned and pressed together
(mated) as in Figure 1(b), a rotation about one of
the shared edges will result in another set of faces
aligning. All subsequent rotations will have the
same result. This property is also true for cubes
and all regular polyhedra, however it is not true
for all isohedra.

3. Like hexagons, an RD module requires only a
single simple rotational motion to move to an
open neighbor site; the rotation about any edge of
an RD module from one site to another is always
exactly 120 degrees. The reason for this simplicity
is that, when packed, every edge is formed by the
adjacency of at most three RD’s. When there are
three RD’s around one edge, no motion can occur
about that edge — the 360-degree space is filled.
When there is one RD, no motion can occur either
since there must be another RD to be moved over
for support. Thus motion can only occur when
there are exactly two RD’s. This uniformity of the
edge relationships is the key to the simplicity of
the design of a mechanism that allows rotations
about edges.

This is a promising example of the Proteo model.
However, the actuation design for the RD shaped
module turns out to be much more difficult than
expected. The algorithms presented in this paper are
tested in a simulation environment with RD shaped
modules. However, the same algorithms shall work for
the general Proteo model without committing to any
particular shape.

2.2 Proteo Spaces
Proteo robot modules reside in a grid space. A grid
space consists of a regular uniform lattice (or “array”),
with each site (“cell”) either empty or occupied by a
module. For simplicity, obstacles are not yet
considered. Figure 2 shows two typical types of 3D-
grid spaces that are described by the way uniform
objects pack. Formally, let Z be the set of integers; then
the 3D-grid space described by the simple cubic
packing is Z3. Similarly, the space described by the
face centered cubic packing is a subset of Z3 with the
sum of three coordinates (x+y+z) even. A
neighborhood of a site is defined to be a set of adjacent

sites. For example, for the simple cubic packing, there
are 6 face adjacent neighbors, 18 edge adjacent
neighbors, and 26 vertex adjacent neighbors; for the
face centered cubic packing, there are 12 face adjacent
neighbors (which are also the 12 edge adjacent
neighbors) and 18 vertex adjacent neighbors.

(a) (b)

Figure 2. (a) Simple cubic packing
 (b) Face centered cubic packing

RD modules naturally reside in the 3D-grid space that
is described by the face centered cubic packing. And
for the RD, two sites are neighbors if and only if they
are face adjacent; there are a total of 12 neighbors for
each site.

2.3 Proteo Modules
A Proteo module is an electromechanical device; with
embedded sensors, actuators and controllers. Two
modules in a grid space can be connected if their sites
are neighbors, which can be face, edge or vertex
adjacent depending on the shape of modules or
hardware design. Note that even though this definition
does not imply that two modules are rigidly connected,
in implementation it is normally the case.
Communication will be established between two
modules when they are connected. The physical
position of a module can be uniquely described by its
site in a grid space, e.g., its Cartesian coordinates. This
assumes that the module’s orientation doesn’t matter;
either the module is symmetric or its orientation does
not change by motion. A module can move itself to one
of its open neighbor sites by the support of another
connected module, e.g. rolling over the other module,
at a discrete time step.
 A Proteo robot consists of a set of connected,
identical, (in the sense of both hardware and software),
modules in a grid space. A configuration of a Proteo
robot is the set of sites occupied by the modules in the
grid space. A Proteo robot changes its configuration by
a series of module motions. The Proteo robots fit the

description of “Digital Robots” (Walker and Cavallaro,
1999).

2.4 Motion Constraints
When is a module in a Proteo robot able to move to
one of its open neighbor sites? Different mechanical
designs lead to different answers to this question.
However, there is a set of common properties:

1. A module moves relative to another module,

denoted as a parent. There must exist a
neighboring parent module to move.

2. A module may only be attached to its parent while
moving. It may not carry other modules while
moving.

3. The motion of the module must not collide with
any other module.

4. The entire group of modules must remain
connected after the motion (assume the modules
are connected initially).

5. There is a fixed base module, which does not
move.

Note that gravity constraints have not yet been
incorporated, i.e., it is assumed that the connection
between modules is strong enough to hold modules
together in any configuration, or that gravity is
negligible (such as in space).
 The first property restricts the way modules move
around each other. The second property greatly
simplifies planning/control problems and eases
mechanical design. The last two properties stem from
the assumption that one power source supplies power
to all modules through connected modules from the
fixed base module. The extra fixed base constraint
makes the self-reconfiguration problem harder.
However, the control algorithms developed later are
applicable to Proteo robots without the fixed base
constraint as well.
 Property three, which varies from system to system,
is a blocking constraint. At one extreme, if a module is
entirely surrounded by all its neighbor modules, then
that module cannot move. At the other extreme, if a
module is only connected to a single module, then it is
free to move to any of the neighboring sites supported
by the other module. This blocking constraint describes
the situation of a module preventing other modules
from moving into or out of a position. Given a Proteo
model, blocking constraints are defined as follows. Let
M be a site in the grid space, N and B be neighbor
sites of M, and P be a neighbor site of both M and N
(see Fig. 3 for a 2D illustration). The triple 〈〈〈〈N, P, B〉〉〉〉 is

a blocking relation for M if and only if a module at site
B blocks the motion of a module at site M toward the
site N with the support of a module at P. In other
words, the relation says that a module at site B stops a
module at site M from moving out of its current
location if it tries heading toward site N with the
support at site P. Note that blocking relations are
defined locally and it is always the case that 〈〈〈〈N, P, N〉〉〉〉
is a blocking relation, namely, any module at a
neighbor site N blocks its motion to N.

Figure 3. A blocking relation for 2D hexagon modules

Motion constraints are symmetric, i.e., if a module at
site M cannot move to its open neighbor site N, a
module at site N cannot move to its open neighbor site
M. A blocking constraint can be defined via blocking
relations: A module at site M can move to its neighbor
site N with the support of a module at site P if:

1. [Leaving Constraint] There is no module at site

B such that 〈〈〈〈N, P, B〉〉〉〉 is a blocking relation for M,
and

2. [Arriving Constraint] There is no module at site
B such that 〈〈〈〈M, P, B〉〉〉〉 is a blocking relation for N.

For rigid 2D modules in Figure 3, a module at site M
cannot move to site N if there is a module at site B
(violates the leaving constraint) or if there is a module
at site D (violates arriving constraint). Note that the
blocking constraint is local in the sense that if a
module at B blocks the motion from M to N, B is a
neighbor to either M or N, i.e. B is a neighbor or a
neighbor of the neighbors of M. A site N is said to be
within the second-order neighborhood of a site M if
and only if N is a neighbor of M or N is a neighbor of
the neighbors of M. Thus, a blocking site B of M
must be within the second-order neighborhood of M.
 Given any pair of neighbor sites 〈〈〈〈N, P〉〉〉〉 of M, if n is
the number of sites B such that 〈〈〈〈N, P, B〉〉〉〉 is a blocking
relation for M, the system is said to have an n-side

constraint. For 2D rigid hexagon modules in Figure 3,
such as Fractum (Murata et. al, 1994), the system has
the 3-side constraint. However, if the hexagon is
flexible, such as the one designed in (Pamecha et. al,
1996), i.e. deforming itself during motion, the system
would only have the 1-side constraint. Similarly, RD-
shaped Proteo can have a 7-, 5-, 3-, or 1-side
constraint depending on how the mechanical system is
designed. The 7-side constraint corresponds to a fully
rigid RD shaped module. The 5-, 3-, and 1-side
constraints correspond to different levels of
deformation of the RD shape during motion. While this
paper will not discuss the mechanical design for
various blocking constraint types, it is clear that the
mechanical design becomes more difficult as n goes
down, but the control system becomes easier. At the
extreme with the 1-side constraint, a module can move
to any open neighbor site by deforming and squeezing
between any neighboring modules that would block a
rigid RD module.

Figure 4. An immobile configuration of 6 RD.

 A subset of modules in a configuration is called
immobile if and only if no module in that subset can
move independent of the surrounding structure of the
subset. A blocking constraint for a Proteo model is
satisfiable if and only if there do not exist immobile
subsets in any configuration. Blocking constraints that
are not satisfiable can lead to unsolvable
reconfiguration problems. For example, the 3-side
constraint for the 2D hexagon model is satisfiable.
However, the 7-side constraint of the RD model is not
satisfiable: if six RD’s are brought together at a
common vertex as shown in Figure 4, no RD can
move. Since motion constraints are symmetric, the
inverse is also the case: modules cannot move into this
subset of any configuration. This subset is
encompassed within many possible configurations,
most notably any solid configuration with thickness
greater than three RD modules. This result greatly
restricts the set of configurations that can be built by
the rigid RD-shaped Proteo model. However, if a little
deformation is allowed during motion, resulting in the

N
B

M
P

D

5-side constraint, there are no configurations that are
immobile due to blocking constraints alone.
 However, satisfiable blocking constraints do not
imply that all configurations are mobile. An example of
a satisfiable blocking constraint is Murata’s 3D Self-
Reconfigurable Structure (Murata et. al, 1998), which
is in the 3D-grid space Z3 described by simple cubic
packing. A module can only move to an edge adjacent
neighbor site using a face adjacent neighbor as the
pivot support as in Figure 5(a). Note that even though
the pivot (parent) module rotates 90 degrees, it is
considered stationary in this model since it does not
move to another position in the grid and rotations
result in functionally identical orientations due to its
symmetry. The system has a 2-side constraint. Even
though the blocking constraint is satisfiable, an
immobile configuration projected in 2D is shown in
Figure 5. However, it is not an immobile subset since

(a)

(b)

Figure 5. (a) A step move in Murata’s 3D Self-

Reconfigurable Structure (b) Immobile configuration

adding any module to the subset results in a mobile
configuration.
 Note that in general, motion constraints are not
local. The fourth property, connectivity, is one example
of a global constraint. A system with a satisfiable
blocking constraint can also have immobile
configurations due to a combination with other motion
constraints, such as connectivity. For example,
(Nguyen et. al, 2000) showed a configuration of 2D

hexagon with 3-side constraint in an immobile state,
due to the combination of the blocking constraint, the
fixed base constraint and the connectivity constraint.
 If more than one module is allowed to move at one
time, there are further motion constraints:

1. No two modules move to the same open site.
2. Parents cannot move while supporting the motion

of other modules.
3. No module becomes a blocking module for a

moving module.

A single step motion of a Proteo robot is a set of
simultaneous single step moves that satisfy all the
motion constraints.

2.5 Reconfiguration Problems

The reconfiguration problem for a Proteo robot is
defined as follows: Given an initial configuration I and
a final configuration F, find a series of single step
motions that leads from I to F. Even though related,
two different kinds of reconfiguration problems,
reconfiguration motion planning problems and
reconfiguration motion control problems, shall be
defined. For motion planning, the inputs are the initial
and final configurations I and F, and the output is a
series of single motion steps that leads from I to F. For
motion control, the inputs are the current and final
configurations, as well as the state of the control, and
the output is a single step motion that moves towards
the final configuration.
 At one extreme, a motion planner may produce the
whole series of steps off-line and a motion controller
may follow the steps open loop. At the other extreme, a
motion controller may determine each of the steps
sequentially on-line. Between these extremes, a motion
planner can be used inside a motion controller to
obtain a partial or complete sequence to the final
configuration in order to assure the best move for the
next step (e.g., optimal or guaranteed success). The
controller then follows the first few steps until a new
plan is produced.
 On the other hand, a motion controller can also
produce a motion plan by recording all the steps to the
final reconfiguration. However, it is most likely that
such a “plan” is not optimal, i.e., within the minimal
number of steps or moves. Nevertheless, as shown by
many people, (Latombe, 1991) for example, optimal
planning of the motion of n robots, or in this case
modules, moving at the same time from one

pivot

configuration to another, is intractable, as the search
space is exponential in n.
 This paper focuses on motion control, in particular,
distributed motion control of the reconfiguration
problem. The purpose of studying distributed control is
to push the idea of homogenous systems to an extreme,
so that all the modules not only have the same
hardware, but also have the same software.

3. Distributed Control of Reconfiguration

In distributed control of Proteo robots, all modules
have an identical controller and each controller decides
where to move, depending on its current site, its
current state, and states of neighbors determined via
local communication. This includes limited sensing to
determine collision and disconnection detection.
 Reconfiguration problems are hard. Distributed
control for self-reconfigurations is harder. There are
several specific issues for distributed control:

1. Stability: The control law in each controller

locally has to confirm to some type of global
stability. The system should stop motion when its
final configuration is reached.

2. Local minima: The problem of local minima
exists in most local control laws. Extra care must
be taken to minimize the factor of local minima,
such as adding randomness or turbulence.

3. Overcrowding: Modules sometimes overcrowd in
an area, blocking the motion of each other. Extra
communication has to be established to alleviate
this situation.

This section defines the formal model for this class of
control, and develops a type of distributed control with
a global goal ordering. Three instances of such control
are illustrated and their properties are discussed.
Finally performance results of these control algorithms
are shown.

3.1 Control Model
A distributed control model for Proteo robots is
defined as follows:

1. All modules have identical controllers.
2. Each controller knows the final configuration, its

own site and has a set of states including
information about the global configuration.

3. At each time step, two modules can exchange state
information when they are connected.

4. Each controller decides where to move according
to its local information and its incomplete or
delayed global information.

5. If a move is not achieved due to sensed violation
of global motion constraints, the controller will be
notified (via sensors) and will be allowed to revise
its output as many times as needed.

The sensed motion constraint violations include:

1. There is a module that is moving to the same

destination site.
2. Its parent module is moving.
3. There is a moving module that becomes a

blocking module.
4. The module to be moved will divide the

system/robot into two disconnected parts.

Condition 1,2 or 3 happens only if more than one
module moves at the same time.
 In this model, communication can be used to build
the global state of the configuration as messages may
be passed from module to module. If nothing is moved
for more than N steps, where N is the number of
modules, and every module communicates its site
information and passes the site information it has
received, every module is able to know the sites of all
the other modules. In other words, if each module
communicates N times before making a decision for
moving, each module would have the global state
information for making that decision. In real situations,
modules would not necessarily be restricted to
communicate only once per motion step as a
mechanical move is normally much slower than an
electronic data move. However, letting N modules
communicate N times when N is very large would still
slow down the reconfiguration process. Considering
that every step of communication time takes O(N)
since the size of the information is O(N), N steps
would take O(N2). In practice, the number of
communication steps for a move shall be set to a
constant n for n much less than N, depending on the
time for making one step motion mechanically.
 For each control cycle, the controller works as
shown in Figure 6. The “Reset” phase is used to
synchronize all the initial information among
distributed controllers before communication. During
the “Communication” phase a module exchanges
information with its connected modules. There can be
n, where n is greater than or equal to 1 and less than or
equal to the number of modules, number of
communication steps before a mechanical move. Then,
in the “Decision” phase it computes the next moving

direction according to its current information. During
the “CanMove” phase, it checks, via sensors, whether
or not motion constraints are satisfied. The module
enters the “Revise” phase and re-computes the next
possible move when a move cannot be made due to
unforeseen (or global) motion constraints.

Figure 6. Flowchart of each distributed controller for one
step motion

3.2 Goal Ordering
A goal is a site in the final configuration. The
distributed control for the reconfiguration problem
presented here is based on goal ordering: a partial
order defined on a grid space that will be used to
determine the order for filling goals of any final
configuration. Let < be a partial order defined on the
grid space. If L1 and L2 are two sites in the grid space
and (L1 < L2), L1 will be filled before L2, given L1 and
L2 are goals; L1 has lower order (or higher priority)
than L2 and L2 has higher order (or lower priority) than
L1.

There are two purposes for goal ordering:

1. To enforce some order for filling the goals so that

once a module fills a goal in the order, it can stay
there forever without blocking other modules
moving to the rest of the unfilled goals.

2. To enable local reasoning about global
information so that communication can be kept
minimum.

Incorporating the blocking constraint and the fixed
base constraint, an ordering defined on the grid space
is called a goal ordering if and only if it satisfies the
following conditions:

1. The site of the fixed base belongs to the set of

sites that have the lowest order.
2. For an n-side constraint Proteo model, at least n

neighbor sites have higher order than the given
site.

3. There must exist a parent P and a neighbor site N
pair 〈N, P〉 of any given site M whose set of
blocking neighbors is a subset of neighbor sites
that have higher order than M.

An example goal ordering follows for an RD shaped
Proteo model with the 5-side constraint. An ordering
can be defined via a single-valued function H as
follows: let H(L) = |yL - y0 + zL – z0| where (x0, y0, z0) is
the base coordinates, and L1 < L2 if and only if H(L1)
< H(L2). Without loss of generality, we can assume
that the fixed base is at the origin, (0, 0, 0), and L is at
(x, y, z), so that H(L) = |y + z|.

Proposition 1. The ordering defined above is a goal
ordering for RD with the 5-side constraint.

Proof: For any site L with coordinates (x,y,z), there
are 12 neighbor sites at (x+1, y+1, z), (x-1, y+1, z), (x-
1, y-1, z), (x+1, y-1,z), (x+1, y, z+1), (x, y+1, z+1), (x-
1, y, z+1), (x, y-1, z+1), (x+1, y, z-1), (x, y+1, z-1), (x-
1, y, z-1), (x, y-1, z-1). If L is the fixed base, H(L) = 0,
therefore, the fixed base has the lowest order. Since
H(L) is an absolute value, there are two cases for H(L)
> 0. For y + z > 0, (x+1, y+1, z), (x-1, y+1, z), (x+1, y,
z+1), (x-1, y, z+1) and (x, y+1, z+1) is the set that has
higher order. These sites correspond to the blocking
neighbors of four parent and neighbor pairs, one of
which is 〈〈〈〈N=(x+1, y-1, z), P=(x+1,y, z+1)〉〉〉〉. Similarly,
for y + z < 0, (x+1, y-1, z), (x-1, y-1, z), (x+1, y, z-1),
(x-1, y, z-1) and (x, y-1, z-1) is the set that has higher
order and are the blocking neighbors of four parent and
neighbor pairs, one of which is 〈〈〈〈N=(x+1,y, z+1),

 Revise

No

 Done

n times

 Reset

Communication

 Decision

CanMov
Ye

 Start

P=(x+1, y-1, z)〉〉〉〉 (note P and N are swapped from the
previous case). For any given site L with H(L) = 0,
both cases apply and there are 10 ≥ 5 neighbor sites
with higher order than the given site. For all other
cases (H(L) > 0), there are exactly 5 neighbor sites
with higher order than the given site. #

Proposition 2. If G is a goal ordering for an n-side
constraint, G is also a goal ordering for an m-side
constraint for all m < n whose set of blocking
relations are a subset.

Proof: If G is a goal ordering for an n-side constraint,
it satisfies the conditions for the goal ordering. If m <
n, all the conditions are still satisfied for an m-side
constraint if its blocking relations are a subset. #
 Readers are encouraged to verify that there is no
goal ordering for the RD with the 7-side constraint. In
general, the following proposition holds.

Proposition 3. A goal ordering for a Proteo model
exists if and only if its blocking constraints are
satisfiable.

Proof: A goal ordering imposes a constraint on the
order of motions to fill a configuration. If a blocking
constraint is satisfiable, then there exists a goal
ordering, since one can always start with the largest
configuration with all the sites occupied by modules
and define an order by assigning the highest order to
one of the modules that can move, removing this
module and assigning the second highest order to one
of the modules that can move in the remaining
configuration, and so forth. Conversely, if there is a
goal ordering, there does not exist an immobile subset
in any configuration due to the blocking constraints,
since a module with the highest order, which has no
blocking neighbors with respect to a parent, can always
move, if the parent exists. #
 A goal is called filled, if and only if a stabilized
module occupies it. A goal is called constrained if
filling it would block other goals from being filled.
Specifically, goal G is constrained if and only if there
is an unfilled goal G’, G’ < G, which is within the
second-order neighborhood of G. A goal that is not
constrained is called unconstrained. The unconstrained
property of a goal can be calculated using the goal
ordering and the information on the filled goals. Note
that “filled” is a global property, but “unconstrained” is
a local property, dependent only on the state of nearby
sites.

 A distributed controller based on the goal ordering
can be constructed as follows: each controller has an
array named “filled” and an array named
“unconstrained”, indexed by goals in the final
configuration. A module will no longer move as soon
as it comes to an unconstrained goal site. An element
in the “filled” array is set as soon as the corresponding
unconstrained goal is filled with a module. The “filled”
arrays are propagated every step via communication by
updating connected neighboring modules. In addition,
more filled goals can be deduced from the goal
ordering, i.e., whenever a goal is filled, all its neighbor
sites with lower ordering must also have been filled. At
any time, the “filled” array is a module’s internal
snapshot of the global configuration. At the same time,
elements in the “unconstrained” array will be deduced
using the goal ordering and the states of the “filled”
array. The procedure implies the following
consequences:

1. Both “filled” and “unconstrained” arrays are

monotonic in time, i.e., when an element is set, it
is forever set.

2. Both “filled” and “unconstrained” arrays are
conservative, i.e., if an element in the “filled” (or
“unconstrained”) array is set, it is guaranteed that
the goal is actually filled (or unconstrained).

3. A “filled” goal is an “unconstrained” goal, i.e. the
“filled” sites are a subset of the “unconstrained”
sites.

The system has a set of control modes that are listed in
the next section; one of the modes is “goal-reached”
which indicates that the module has occupied an
unconstrained goal and will no longer move. If the
module is not in the “goal-reached” mode, the module
will decide how to move by ordering the set of open
neighbor sites according to some “neighbor ordering”
criteria. The lowest in the ordering that satisfies local
motion constraints will have the highest priority and be
chosen first, and the rest will be tried out in order if
revision is required.
 The algorithm stops when all the elements in the
“filled” array are set. Because the “filled” array is
conservative and monotonic, the distributed control
based on the goal ordering is “stable” in the sense that
the number of “unfilled” goals will not increase.
However, it does not guarantee that the final
configuration will be achieved.

3.3 Goal-Ordering based Control Algorithms
This section first discusses two types of methods
corresponding to two different neighbor-ordering

strategies. The properties of the algorithms are
analyzed and a hybrid method is then proposed.

3.3.1 Distanced-based Method
The distance-based method uses the “distance” to
unconstrained unfilled goals as the major measure for
ordering open neighbor sites. Euclidean distance is
used in the algorithm. However, any other distance
metric should work about the same. Performance may
vary by using different metrics (Pamecha et. al, 1997).
Each module has a variable “target”, which is the
closest unconstrained unfilled goal to the current
module according to the distance measure. Note that
two or more modules can have the same target. Once
the target is filled, a new target will be chosen.
 Some heuristics have to be used to solve the problem
of overcrowding, i.e., too many modules are around a
target site, blocking each other from the target site. The
problem is solved using the principle of “competition
and cooperation”. Competition takes place when
modules are far away from the target site, and
cooperation takes place when more than one module is
a neighbor of the same target. By reserving the target
for only one of these modules and redirecting the rest
to other targets, overcrowding will be relieved.
 In addition to the “goal-reached” mode, there are
four other modes in this method: namely, “no-goal”,
“reserve-goal”, “assist-goal” and “normal-goal”.

1. “no-goal”: every module is in “no-goal” mode

initially, and will become “no-goal” again
whenever its target is filled, or reserved by other
modules. In this mode, a new target is chosen
from the closest unconstrained unfilled goals
which have not been reserved by others at that
time. If no such target exists, i.e., all the
unconstrained goals are either filled or reserved by
others at the time, a dummy goal, which is outside
of the final configuration, will be chosen. The
dummy goal can be random, or any site just
outside of the edge of the goal configuration. In
our experiments, we first find M as the goal site
with the largest H, where H is defined as |y+z|. We
then use D = M + (0,4,4) if (y+z)>0 and D = M +
(0,-4,-4) if (y+z)<0. This helps to relieve
overcrowding situations by allowing modules with
nowhere to go to move away, so that the goals can
be filled by modules that have reserved them.

2. “reserve-goal”: a module at site M will reserve its

target goal T, if and only if,
a) T is its neighbor,

b) T < M, and
c) there exists another goal G, a neighbor of T,

with G < T.
If a module satisfies these three criteria, it records
the time that it reserved the goal. The module then
keeps this reservation for some steps, or until it
communicates with a neighbor that reserved the
same goal at an earlier time. This reservation
information is then propagated from its neighbors
to other modules moving toward this target. Any
other module moving towards the same goal is
forced to choose a different goal. By forcing other
modules to choose other goals, the module
making the reservation should have more room to
move. According to the goal ordering constraint,
G must have been filled. If G is a neighbor of M,
the module can then use G as its parent, rolling
over G to fill is target T.

3. “assist-goal”: if a module M has reserved a target
T, but there is no filled goal G that is a neighbor
of M, M will raise an assistance-required flag. If
a connected module is also moving toward T, then
instead of choosing another goal, it assumes the
“assist-goal” mode and assists the reserving
module M by moving to a neighbor site P
satisfying P < T. The reserving module can then
lower the assistance-required flag and roll over the
assistant to reach its goal.

4. “normal-goal”: the system is in “normal-goal”
mode if it has a target. The mode will switch to
“no-goal”, “reserve-goal”, or “assist-goal”
whenever the corresponding conditions are
satisfied.

The transition between these modes is depicted in
Figure 7.

 For all modes, except “goal-reached”, the control
will decide which open neighbor site to move to,
according to some ordering with respect to its target.
Neighbor sites are ordered in terms of its connectivity
and its distance to the target. A site that is a neighbor
of a filled goal or is a neighbor of at least two modules
is ranked with a higher priority. This is called the
connectivity ranking. If this ranking is the same for two
neighbor sites, the distance to the target will be used
for ranking; the one with shorter distance is ranked
with a higher priority. If both factors are the same, then
the two sites are ordered randomly. The modules tend
to stay together rather than spread out in long thin
chains toward goals, due to the connectivity criterion.
The lack of long chains results in a significant decrease

in the number of local minima for the distance
heuristic.

Figure 7. State-transition for distance-based control

3.3.2 Heat-based Method
The heat based method uses a simulated “temperature”
as a measure for ordering open neighbor sites, in which
unfilled unconstrained goals are heat sources and non-
goal-reached modules are heat sinks. Unfilled
unconstrained goals produce heat (increase
temperature) at every step and non-goal-reached
modules consume heat (decrease temperature) at every
step. Heat sources propagate portions of the heat
through contacting modules. All modules propagate
heat to their neighbor modules. This propagation is
heat preserving, i.e., the heat added to a neighbor
module is subtracted from the given module.
 In this control, each module has a state variable
“temperature” which is set to 0 initially. In addition, a
“goal temperature” array is updated at every step
locally. During the “Reset” phase (see Figure 3.1), each
module that is not yet “goal-reached” will decrease its
temperature by one unit, and each unfilled
unconstrained goal will increase its temperature by one
unit. During the “Communication” phase, heat is
propagated through modules. Formally, let T(t) be the
temperature of a given module at time t, and n be the
number of neighbor sites for the grid space (12 in the
case of RD):

∑∑
−∈−∈

+
−

+=+
goalsneighborg

g

ulesmodneighbori

i

n
tT

n
tTtTtTtT

)()()(
)()1(

where Ti’s are temperatures of connected modules and
Tg’s are temperatures of neighboring unfilled goals.
The result is, the modules closer to the unfilled
unconstrained goals are warmer than the modules far
away. During the decision making phase, the

temperatures of open neighbor sites are estimated by
averaging the temperatures of connected modules.
Open neighbor sites are ordered with the higher
temperature ranked higher priority. If the temperatures
for two open neighbor sites are the same, the two sites
are ordered randomly.

3.3.3 Problems and Solutions
Neither of the methods discussed above guarantee the
reachability of final configurations, even though in
practice, they do reach final configurations most of the
time. Some of the unsuccessful cases are due to the
properties of final configurations and some are inherent
to the properties of the methods.
 Final configurations that are too dense (e.g. a big
solid ball) or too sparse (e.g. a hollow ball of one
module thick) are hard to achieve. For the dense case,
modules tend to suffer from overcrowding. For the
sparse case, there are not enough modules to support
rolling over each other.
 Another type of final configuration that is hard to
achieve has structures with partitioned (e.g., a hollow
ball, or any structure that encloses spaces) or concave
(e.g., a cup) spaces. For example, a moving module
inside the bottom of a cup will be stuck and unable to
fill a goal outside the bottom of the cup (see Fig. 8(a)).
Based on the assumption that the final configuration is
known to every module, the problem can be solved by
assigning exclusive areas (such as the inside of a
hollow ball) outside the final configuration and
keeping modules from moving into these areas in the
control strategy. This strategy no longer works if there
are branches to be filled inside a hollow ball.

 There are also final configurations with “black holes”. A
site that is not a member of a configuration is called an

 Goal-reached

No-goal

Assist-goal Reserve-goal

Normal-goal

exterior site of the configuration if and only if it is a
neighbor of a site in the configuration. An exterior site of a
final configuration is a black hole if a module in the site
cannot move when its neighbors are filled. An example of a
final configuration with a black hole is a plane with an
interior site removed (see Fig. 8(b)). Final configurations
with black holes may trap moving modules and keep them
from reaching their final goals. The strategy of assigning
exclusive sites can be used if black holes are identified a
priori.
 Because the decision making in these methods is local in
both space (within connected modules) and time (current
state), local minima can occur. To alleviate this, two
strategies have been taken for ordering open neighbor sites:

1. added randomness: open neighbor sites are ordered
randomly given that the other criteria are the same.
2. imposed noise: the best open neighbor site is
skipped and the second best neighbor site is chosen from
time to time to avoid being trapped in the same situation.

A significant difference between the distance-based method
and the heat-based method is that the heat-based method
considers the module motion along the surface of the
configuration, while the distance-based method assumes
modules can move freely in space. One unsolved problem
with the distance-based control is the formation of long
chains of modules where the target of the end module is
past the end of the chain (see Fig. 8(c)). The chains may
not be deformed and the system would be stuck without
further progress. The problem is hard to solve within this
method. On the other hand, the heat-based method solves
the long chain problem naturally, since the ends of chains
tend to get colder and colder while the body that contacts
unfilled goals are getting warmer and warmer. Therefore,
modules would move closer to the body. However, the
heat-based method tends to be much slower, since the
directions of the goals are blurred with local temperatures
and propagation of temperatures has a large delay. In fact,
it is hard for a module to find the right direction to move
when it is far away from goals.

(a)

 (b)

(c)

Figure 8. Hard situations for reconfigurations (a) goal with
partitioned spaces (b) goal with black hole (c) long chain;

where sites in black: goal-reached modules; in gray: moving
module; in white: empty goal site

3.3.4 Combined Method
Based on these observations, a method combing both
methods is developed. In the combined method, the
control starts with the distance-based method, and
switches to the other method when the system seems
stuck. The key problem in this method is switching
simultaneously in every module’s controller without
using some instantaneous global communication. For
the combined method, every module has an extra state,
named “stuck-time”, which is used to estimate the
number of steps since the last goal was filled globally.
If a module occupies an unfilled unconstrained goal,
and its “stuck-time” is less than a preset value m, its
“stuck-time” is reset to 0. In the “Reset” phase, the
“stuck-time” is increased by one. During the
“Communication” phase, the “stuck-time” of each
neighbor is communicated and the smallest “stuck-
time” among them is set to be the new “stuck-time”.
Thus, the minimum “stuck-time” is propagated to all
the modules.
 Let D be the maximum distance between two
modules at any time. The following proposition holds.

Proposition 4. If the “stuck-time” of one module is
beyond D + m, the “stuck-time” of every module is
beyond D + m.

Proof: The system is said to have progress if and
only if there is a module whose “stuck-time” has just
been reset to 0. Since m is the threshold that disallows
a module to reset its “stuck-time” to 0, if there is no
progress for m steps, the system will not have any
further progress. D is the maximum number of steps for
a new stuck-time (or any other piece of information) to
be propagated to all modules since modules
communicate once per step and communication
spreads to all neighbors locally at each step. If the
“stuck-time” of one module is beyond D + m, then
within the last D + m steps, there has been no progress;
the last progress would have been propagated to every
module before the last m steps. Therefore, the “stuck-
time” of every module is beyond D + m. #
 From this property, D + m can be used as a
threshold to switch from one method to another, since
it guarantees that all the modules switch at the same
time. In the worst case, D is equal to the number of
modules N. In practice, m can be set to any value
greater or equal to 1.

3.4 Results and Performance

(Chirikjian et. al, 1996) presented an analysis on
bounds for self-reconfiguration of (2D) metamorphic
robots, in which the maximal simply-connected overlap
is defined to be a maximum connected subset of the

overlap between the current and the final
configurations without loops. The same analysis for
upper bounds can be carried out for Proteo robots,
where “maximal simply-connected overlap” is replaced
by “maximal constraint-free connected overlap”. A set
of modules is “constraint-free connected” if and only if
any module in an exterior site of the set can move to
any other exterior site via one or more steps, without
violating motion constraints. Clearly the minimum
such overlap is just the fixed base. Similarly, a lower
bound on the total number of moves is given by an
optimal assignment between the initial and final
configurations, if there is only one module moving at a
time.
 These bounds only give references on how well a
reconfiguration algorithm works in general. For
distributed control with only local or delayed
information, it is hard to guarantee the steps do not
exceed the upper bound for all initial and final
configurations. In fact, local minima may occur and the
system may be stuck without being able to achieve the
final configuration.
 Various test cases are simulated, using the RD
shaped 5-side constraint Proteo model with the initial
configuration as a one module thick rectangular plane.
Table 1 shows the number of time steps, one step
communication per move, of the three methods,
distance-based, heat-based and combined, for four
types of final configurations, flat disk, solid ball,
hollow ball and cup, with four different numbers of
modules. The best algorithms for each case is marked
in bond.

Disk(57,129,221,441) Sball(55,135,249,429)

Hball(42,114,302,450)

Cup(43,110,234,443)

D H C D H C D H C D H C
Small 116 468 116 125 170 125 65 220 65 62 276 62
Small-Medium 255 1644 255 ∞ 499 574 312 3730 312 361 435 361
Medium-Large 320 4329 320 ∞ 1327 807 952 3186 952 323 2211 323
Large 402 ∞ 402 ∞ ∞ 2105 705 3727 705 537 ∞ 537

Table 1. The number of steps for reconfiguration of various shapes and sizes, starting from a initial plane, where ∞ denotes
either stuck or steps greater than 5000. The numbers in () are actual number of modules for each final shape corresponding to
Small, Small-Medium, Medium-Large and Large, respectively. D: Distance-based, H: Heat-based, C: Combined

The results show that the algorithms tend to take linear
time with respect to the number of modules, if the best
method is used. In the cases where the number of time
steps is significantly large with respect to the linear
curve, it is likely that more than 90 percent of goals are
filled within less than 50 percent of time. Figure 8
shows how the overlap metric varies with time for the
final configuration of a hollow ball with 302 modules,
where the metric is defined by the percentage of non-
overlap modules between the current and final
configurations.

Figure 8. Reconfiguration process for a hollow ball

From the experiments, both the distance-based and the
heat-based methods can get stuck: the distance-based
method more likely gets stuck in a long chain, and the
heat-based method gets stuck in a position where heat
is balanced in all directions. Also, normally the heat-
based method is slower than the distance-based
method.

4. Conclusion and Future Work

We have presented a class of distributed control
methods for 3D metamorphic modular robot
reconfigurations. The methods apply to a class of
metamorphic robots called Proteo whose
characteristics have been formally defined. The
properties of such methods are discussed and
experimental results are shown. These methods have
been tested in a simulation environment, which is
available in the modular robots web site:
http://www.parc.xerox.com/modrobots/Proteo/simulati
on.

4.1 Software Readiness
The control algorithms are developed and tested with
the simulation environment. The control structure
restricts the algorithm to use local information only.
Even though the simulation does not run on “parallel
processors”, the algorithms are totally distributed and
ready to be implemented for embedded processors.

4.2 Hardware Readiness
The prototype of the RD shaped Proteo modules is
being designed. Due to the difficulty in obtaining the
actuation mechanism, the first prototype will be
“Digital Clay”, with embedded sensing and
communication, but with no actuation.

4.3 Future Research
The research on distributed control of 3D
metamorphosis is far from finished. The following is a
list of future work that is related to the content of this
paper:

1. define or use goal ordering for blocking

constraints that are not satisfiable,
2. choose different goal orderings for different types

of initial and final configuration,
3. calculate efficiently upper and lower bounds of

reconfiguration steps,
4. decompose a shape into a set of simple ones,

design reconfiguration algorithms for each simple
shape, and then combine the steps,

5. study special cases of configurations and control
strategies that guarantees the goal achievement,
and

6. incorporate gravity constraints into the model.

0

20

40

60

80

100

0 500 1000

Time

M
et

ric

Acknowledgements

This work is funded by the Defense Advanced
Research Project Agency (DARPA) under contracts
#MDA972-98-C-0009 and #DABT630095C-025.
Thanks also Arancha Casal for valuable comments and
An Thai Nguyen for pointing out a subtle mistake in
the paper.

References

Bojinov H., Casal A. and Hogg T. 2000. Emergent Structures

in Modular Self-reconfigurable Robots. In Proc. IEEE
International Conference on Robotics and Automation,
San Francisco, CA. pp. 1734-1741

Chirikjian G. 1993. Metamorphic Hyper-Redundant
Manipulators. In Proc. JSME International Conference
on Advanced Mechatronics, pp 467-472.

Chirikjian G., Pamecha A. and Ebert-Uphoff I. 1996.
Evaluating Efficiency of Self-Reconfiguration in a Class
of Modular Robots. Journal of Robotic Systems
13(5):317-338.

Fukuda T. and Kawauchi Y. 1990. Cellular Robotic System
(CEBOT) as One of the Realization of Self-Organizing
Intelligent Universal Manipulator. In Proc. IEEE
International Conference on Robotics and Automation,
pp. 662-667

Hamlin G. and Sanderson A. 1996. Tetrobot modular
robotics: prototype and experiments. In Proc. IEEE/RSJ
International Symposium of Robotics Research, Osaka,
Japan, pp. 390-395

Hosokawa K., Tsujimori T., Fujii T., Kaetsu H., Asama H.,
Kuroda Y. and Endo I. 1998. Self-Organizing Collective
Robots with Morphogenesis in a Vertical Plane. In Proc.
IEEE International Conference on Robotics and
Automation, Leuven, Belgium, pp 2858-2863.

Kotay K., Rus D., Vona M. and McGray C. 1998. The Self-
reconfiguring Robotic Molecule. In Proc. IEEE
International Conference on Robotics and Automation,
Leuven, Belgium, pp 424-431.

Latombe J.-C. 1991. Robot Motion Planning, Kluwer:
Dordrecht, Netherlands.

Murata S., Kurokawa H. and Kokaji S. 1994. Self-
Assembling Machine. In Proc. IEEE International
Conference on Robotics and Automation, pp 441-448.

Murata S., Kurokawa H., Yoshida E., Tomita K. and Kokaji
S. 1998. A 3D Self-Reconfigurable Structure. In Proc.
IEEE International Conference on Robotics and
Automation, Leuven, Belgium, pp 432-439.

Nguyen A., Guibas L. and Yim M. 2000. Controlled Module
Density Helps Reconfiguration Planning. In Workshop on
the Algorithmic Foundations of Robotics, pp TH15-
TH27.

Pamecha A., Chiang C., Stein D. and Chirikjian G. 1996.
Design and Implementation of Metamorphic Robots. In
Proc. ASME Design Engineering Technical Conference
and Computers in Engineering Conference, Irvine,
California.

Pamecha A., Ebert-Uphoff I. and Chirikjian G. 1997. Useful
Metrics for Modular Robot Motion Planning. In Proc.
IEEE Transactions on Robots and Automation
13(4):531-545.

Paredis C. and Khosla P. 1993. Kinematic Design of Serial
Link Manipulators from Task Specifications in
International Journal of Robotic Research, vol. 12, no.3,
pp. 274-287

Rus D. and Vona M. 1999. Self-reconfiguration Planning
with Compressible Unit Modules. In Proc. IEEE
International Conference on Robotics and Automation,
Chi cargo, IL, pp 2513-2520.

Rus D. and Vona M. 2000. A Physical Implementation of the
Self-Reconfiguring Crystalline Robot. In Proc. IEEE
International Conference on Robotics and Automation,
San Francisco, CA.pp. 1726-1733

Unsal C. and Khosla P. 2000. Mechatronic Design of a
Modualr Self-Reconfiguring Robotic System. In Proc.
IEEE International Conference on Robotics and
Automation, San Francisco CA. pp. 1742-1747

Walker I. and Cavallaro J. 1999. Keeping the Analog Genie in
the Bottle: A Case for Digital Robots. In Proc. IEEE
International Conference on Robotics and Automation,
Chicargo, IL, pp 1063-1070.

Will P., Castano A. and Shen W-M., 1999. Robot modularity
for self-reconfiguration. In SPIE International
Symposium on Intelligent Systems and Advanced
Manufacturing Proc Vol. 3839. pp 236-245

Yim M. 1994, New Locomotion Gaits. In Proc. IEEE
International Conference on Robotics and Automation,
San Diego, CA pp. 2508-2514

