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Abstract 
Massively Distributed Control Nets (MDCN) is a CAN 
(Controller Area Network) based high-level protocol that 
has the following features: (1) Three types of 
communication: individual, group and broadcast, with eight 
priority levels. (2) Addressing of up to 254 nodes and 
groups in standard CAN format, and up to 100,000’s in 
extended CAN format. (3) I/O (node-to-node) and port 
(point/process-to-point/process) communications, where I/O 
is mostly reserved for system processes with high priorities 
and short message sizes, and port is for user applications, 
with lower priorities and possibly large message sizes. 
Compared to the existing widely used high-level CAN 
protocols, MDCN can address more communication nodes, 
has simpler APIs, is easier and more efficient to implement. 
Also the bridge protocol is transparent to users as whether it 
is a single CAN bus or a networked CAN buses. MDCN is 
currently implemented in C for MPC555 TouCAN 
controller on the Real-Time Operating Systems vxWorks, 
and in Java on host PC. The API is designed and 
implemented for multi-threaded environments. MDCN is a 
general protocol that not only can be applied to modular 
robots, but also can be applied to any industry control or 
automation using CAN bus network with hundreds of 
communication nodes. 

1. Introduction 
Modular, self-reconfigurable robots show the promise of 
great versatility, robustness and low cost (Yim, Duff and 
Roufas, 2000). However, programming such robots for 
specific tasks, with hundreds of modules and each of which 
with multiple actuators and sensors, can be tedious and 
error-prone. The extreme versatility of the modular systems 
requires a new paradigm in programming (Zhang, Roufas 
and Yim, 2001). This paper presents the underlying 
communication structure for a type of modular self-
reconfigurable robot, named PolyBot (Figure 1), developed 
at Palo Alto Research Center  [http://www.parc.com/ 
modrobots/PolyBot/polybot.htm]. 
 PolyBot has been designed for applications including 
planetary exploration, undersea mining, search and rescue 
and other tasks in unstructured, unknown environments. 
PolyBot consists of two types of modules: segment 
modules and node modules. A segment module is 
composed of two identical connection plates, actuation 

mechanisms for one degree of freedom rotation, and a 
Motorola PowerPC MPC555 embedded processor with 
448K internal flash ROM and 1M of external RAM, which 
also has two internal CAN (Controller Area Network) 
controllers. The connection plate serves two purposes: to 
attach two modules physically together as well as 
electrically; both power and communications are passed 
from module to module. Two connection plates can be 
attached and detached via latch actuation, which enables 
self-reconfiguration. Each connection plate has four IR 
phototransistors and four IR LEDs. Combinations of IR 
intensity measurements allow the determination of the 
relative six degrees of freedom position and orientation of 
the mating plates, which aids in the closed loop docking of 
two modules (Roufas et. al, 2001). Each segment module 
communicates over a global CAN bus with up to 1M bps. 
A node module is a rigid cube made of six connection 
plates (one for each face). In addition to a MPC555, there 
are six external CAN controllers, each for a connection 
plate. A node module serves three purposes: (1) to allow 
for non-serial chains/parallel structures, (2) to house higher 
power computation and power supplies, and (3) to perform 
transparent media access control (MAC) layer bridging 
between CAN networks.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  PolyBot  in a spider configuration 
 
 The PolyBot systems have demonstrated versatility by 
showing multiple modes of locomotion with a variety of 
characteristics, distributed manipulation and the ability to 
self-reconfigure (Yim, Duff and Roufas, 2000)(Roufas et. 



al, 2001). For the end of this year, there will be 100 to 200 
modules built and connected with various configurations. 
 Since the electrical design of PolyBot uses MPC555 that 
has two internal CAN controllers, the use of CAN for 
communication among modules is convenient. CAN has 
gained widespread popularity not only in the automotive 
industry but also in the industrial automation arena 
(Lawrenz, 1997). CAN has also proven that it fits very well 
into the suite of field-buses or sensor/actuator buses 
because of its low price, multiple sources, highly robust 
performance and already widespread acceptance (Negley, 
2000). However, CAN protocol is low level, directly linked 
to the physical media, which makes the communication 
programming not only tedious but also ad hoc.  Several 
high-level CAN protocols exist and are widely used, such 
as CANopen, DeviceNet, SDS and OSEK [http://www.can-
cia.de/]. For our application (modular robots), the main 
limitation of these protocols is their inability to address 
more than 200 communication nodes. Furthermore, most of 
these protocols are far more complex and less efficient than 
our purpose requires. 
 Massively Distributed Control Nets (MDCN) is a CAN 
based high-level protocol that has the following features: 
(1) Three types of communication: individual, group and 
broadcast, with eight priority levels. (2) Addressing of up 
to 254 nodes and groups in standard CAN format, and up 
to 100,000’s in extended CAN format. (3) I/O (node-to-
node) and port (point/process-to-point/process) 
communications, where I/O is mostly reserved for system 
processes with high priorities and short message sizes, and 
port is for user applications, with lower priorities and 
possibly large message sizes. Compared to the existing 
widely used high-level CAN protocols, MDCN can address 
more communication nodes, has simpler APIs, is easier and 
more efficient to implement. Also the protocol is 
transparent to either a single CAN bus or a networked CAN 
buses. MDCN is currently implemented in C for MPC555 
TouCAN controller on the Real-Time Operating Systems 
vxWorks, and in Java on host PC. The API is designed and 
implemented for multi-threaded environments. MDCN is a 
general protocol that not only can be applied to modular 
robots, but also can be applied to any industry control or 
automation using CAN bus network with hundreds of 
communication nodes. 
 The rest of this paper is organized as follows. Section 2 
describes MDCN functionality and APIs. Section 3 
presents MDCN protocols. Section 4 illustrates the 
implementations for embedded processors and the host PC. 
Section 5 discusses the bridging protocol and 
implementation. Section 6 concludes the paper. 

2. MDCN APIs 
Each CAN message provides a standard 11 bits or an 
extended 29 bits of prioritized destination identification, 
and eight bytes of data. Priority arbitration, error detection 
and re-transmission are all handled by the CAN controller 
hardware (Lawrenz, 1997). However, CAN is low level, 

directly linked to the physical media, which makes the 
communication programming not only tedious but also ad 
hoc. For most applications, a higher-level protocol is 
necessary. In general, a higher-level protocol handles the 
following issues: 

• Communication buffers: ingress and egress 
queues. 

• Communication configuration: master/slave, 
point-to-point, broadcast, group communications. 

• Communication patterns: block/non-block 
read/write, confirmation or handshaking, 
subscribe/publish structures, etc. 

• Fragmentation and reassembly of large messages. 
• High-level error detection and correction. 

Several high-level CAN protocols exist and are widely 
used, such as CANopen, DeviceNet, SDS and OSEK 
(Lawrenz, 1997). For our application, the main limitation 
of these protocols is their inability to address more than 
200 communication nodes, which restricts the scalability of 
modular reconfigurable systems. Furthermore, most of 
these protocols are far more complex than our purpose 
requires.  
 We have developed a high-level CAN protocol, called 
Massively Distributed Control Nets (MDCN). Each 
communication node (simply refer to node in the rest of the 
text) on a CAN bus has a unique ID, refer as MAC ID, and 
each node can belong to a set of groups. MDCN features a 
simple set of APIs, with the following functionalities: 

• Three types of communication: individual, group 
and broadcast, with eight priority levels. 

• Addressing of up to 254 nodes and groups in 
standard CAN format (8 out of 11 ID bits for 
addresses), and up to 100,000’s in extended CAN 
format (17 out of 29 ID bits for addresses). 

• I/O (node-to-node) and port (point/process-to-
point/process) communications, where the I/O 
type is mostly reserved for system processes with 
high priorities and short message sizes that can be 
encoded in one data frame, and the port type is for 
user applications, with lower priorities and 
possibly large message sizes encoded possibly in 
many data frames. 

The set of MDCN APIs is very similar to those in socket 
programming, including functions such as create and             
destroy port connections, add and remove groups, 
read/write a message from/to a port. For example, the 
following code fragment shows that a client is creating a 
connection and then sending out a message, and the server 
is accepting the connection and receiving the message.  
Client: 
 //create connection request 
 port = createConnection(type, id); 
 //write to the connection port 
 write(port, message, length, priority); 
Server: 
 //accept the connection request 

port = acceptConnection(); 



//read from the connection port 
 read(port, message, &length, timeout); 
 
In the above code fragment, type can be INDIVIDUAL, 
GROUP, or BROADCAST. This allows addressing 
individual nodes, subsets of nodes (GROUP) or all nodes 
(BROADCAST). The id parameter is the communication 
MAC ID for INDIVIDUAL type, or group ID for GROUP 
type, and read can be blocking or non-blocking depending 
on the timeout value: -1 means blocking, 0 means non-
blocking and any positive number indicates the maximum 
block time. Before using any MDCN functions except the 
setMAC_ID function, MDCN init function has to be 
called, which initializes CAN channels and data structures, 
as well as starts the MDCN daemon. All the nodes have 
unique and constant MAC  IDs after initialization.  
 Each port can associate with a port thread which co-
existent with the port and will be destroyed whenever the 
port is destroyed. Port threads are mostly used for 
client/server applications, such that whenever a connection 
is established between the two parities, the server port runs 
a daemon for accepting and replying the client’s requests.  
 In addition, MDCN provides special functions for 
synchronizing clocks and events in a shared bus. The 
synchronization among nodes is very important for many 
real-time applications. For example in the PolyBot 
situation, IR functions on the two opposing plates have to 
start at the same time to obtain the correct 6D offset 
reading (Roufas et. al, 2001).  
 MDCN is also extendable. In addition to create/destroy 
connections, add/remove groups, which are I/O 
communications, users can define their own I/O commands. 
I/O communications are efficient for short (six bytes of 
data) messages and non-blocking data processing. The 
difference between port and I/O messages in 
implementation will be presented in the following sections. 
 

3. MDCN Protocol 
Each CAN message provides a standard 11 bits or an 
extended 29 bits of prioritized destination identification, 
and eight bytes of data. Priority arbitration, error detection 
and re-transmission are all handled by the CAN controller 
hardware.  
 For standard identification, the 11 bits are assigned as 
follows in MDCN protocol: 
 
0 1 2 3 4 5 6 7 8 9 10 
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The first three bits are for priorities, based on the 
arbitration mechanism built in CAN controllers; so there 
are eight levels of priorities.  The last eight bits are used for 
MDCN addresses. We divide the whole address space into 
four categories:  

• Special messages: address 0 
• Broadcast messages: address 1 

• Group messages: address 2 upward 
• Individual messages: address 255 downward 

There are 8 special messages. The receiving of the special 
messages shall cause the reset of the CAN clock. The one 
with the highest priority (ID 0x000) is reserved for 
generating a synchronization signal. Tasks running on 
different nodes can be synchronized while waiting for that 
signal, if they share the same bus. Also ID 0x100 is used 
for registration request for nodes from bridges, and ID 
0x200 is used for (BPDU) bridging protocol data units for 
bridges, --- in our application, bridges are nodes as well, --- 
the rest of special messages are undefined so far and can be 
extended later. Broadcast messages are messages that shall 
be received for all nodes in the network, bridged or not. 
The individual messages are for individual nodes. Each 
node is assigned a MAC ID. The MDCN address is (255 – 
MAC) for individual messages.  An individual message 
shall be received by only one node in the network, 
assuming all the nodes have different MAC IDs. In 
addition to broadcast and individual messages, there are 
group messages. However, the total number of groups plus 
the total number of nodes cannot exceed 254 for the 
standard CAN format. For a group with group ID, the 
MDCN address is (2 + ID). Each node can associate with a 
set of groups. If a node is associated with a group, the node 
is a member of that group. A group message shall be 
received by all members of that group, no matter where the 
node is in a bridged network. 
 Each CAN message data frame can have maximum 8 
bytes of data; the first two bytes are reserved for MDCN 
headers. In particular, the first byte is for storing the MAC 
ID of the source, and the second is for recording the 
format: 
 

0 1 2 3 4 5 6 7 
FF Tp Dir P0 P1 P2 P3 P4 

 
where FF is Fragment Flag. If FF is 1, it is a fragmented 
message, i.e., message that consists of multiple CAN 
frames; otherwise, it is a non-fragmented message. If FF is 
1, Tp indicates if it is the first frame in a series of 
fragmented messages, i.e., if Tp is 1, it is the first, and 
otherwise it is not. For the first fragment frame, three more 
data bytes are used for recording the length of the total 
message, i.e., the next two data bytes are reserved for 
recording the number of frames--the total number of frames 
can be 216--and the following byte is for recording the 
number of bytes in the last frame. On the other hand, if FF 
is 0, Tp indicates if it is a port or an I/O message.  If Tp is 
1, it is a port message, and otherwise it is an I/O message. 
All the fragmented messages are port messages, i.e., I/O 
messages cannot be fragmented. I/O messages are for 
system commands or high priority communications. An I/O 
message is sent to the node(s) it is targeted, a port message 
is further dispatched to a queue and then accessed by the 
correspondent port through the read function. The third bit 
Dir indicates the direction of the communication, i.e., 
client/request or server/respond. The end that requests for 



establishing the communication is called client and the end 
that confirms the request is called server. A node can have 
many clients and servers running at the same time. The last 
5 bits indicate the client port ID of the communication. 
Therefore, there are maximum 32 client ports that can be 
active at the same time in any node. 
 When the extended CAN format is used, the 29 bits ID is 
assigned as follows: the first three bits are still for 
priorities; there are 8 levels of priorities, the last 17 bits are 
for MDCN addresses, and the middle 9 bits are for the first 
9 bits of the MAC ID source. There are also 8 special 
messages with MDCN address 0, and two data bytes 
reserved: the first byte is the last 8 bits of MAC ID source 
and the second byte stores the same information as the 
standard format. The extended format can address up to 
(217 – 2), i.e., more than 100,000, groups and individual 
nodes.  

4. MDCN Implementation 
MDCN has been implemented on the embedded processors 
MPC555 in C using RTOS vxWorks, and on the host PC in 
Java. In the former case, IEEE standard POSIX pthreads 
are used, so that the code can be migrated to other 
operating systems easily. The implementation enables the 
communication between the host PC and the target, as well 
as the communication among target processors in a uniform 
format. CAN drivers are implemented differently for 
embedded chips and for the host PC, but the high level 
MDCN implementations share the same structure. 

4.1 CAN Drivers 
4.1.1 MPC555 TouCAN Driver 
A modified version of CANpie 
[http://www.microcontrol.net/CANpie/index.html], 
mCANpie, is implemented for MPC555 TouCAN driver. 
For a node with one CAN controller (channel), an input 
queue and an output queue are initialized. In addition, 
buffers are allocated: one for receiving special messages 
(address 00), one for sending special messages, one for 
receiving individual messages, one for receiving broadcast 
messages (address 01), and one for sending regular I/O or 
port messages. Buffers for receiving group messages will 
be allocated when the node is added to the group, and be 
deallocated when the node is removed from the group. For 
MPC555 TouCAN, each node can be associated with at 
most 11 groups since there are total 16 buffers, 5 of which 
are already used. The multi-buffer makes the 
implementation efficient since the filters are hardware 
instead of software; each node will only receive the 
messages sent to it. For a bridge, multi-buffer is not 
necessary since it should receive all the messages sent on 
the bus. 
 The input and output queues are implemented to be 
thread-safe, so that MDCN APIs works in multi-threaded 
environments. Also, the CAN driver is interrupt driven 
rather than frequent pulling. The receiver handler and the 

transmit handler will be triggered whenever an input comes 
in or an output is sent out, in the interrupt routine. The 
transmit handler would simply take out another data frame 
from the output queue and send it out. The receiver handler 
for a node is simple, which pushes any non-special 
messages to the input queue. For special messages, it will 
call the correspondent routines accordingly, such as 
triggering a synchronization mechanism, or sending out a 
register message to bridges. The receiving handler for 
bridges will be discussed in Section 5. 
 
4.1.2 Host PC CANCardX Driver 
For PC, the CANalyzer from Vector Informatic GmbH 
[http://www.vector-informatik.de/] is used. A JINI interface 
is implemented to call read and writer functions from the 
CANDriver. The host PC does not process special 
messages, nor it belongs to any group. Like any node, the 
host has a MAC ID. It receives individual and broadcast 
messages only, even though it can still sends group 
messages. 

4.2 MDCN Ports and FIFOs 
The main data structure for MDCN is a port, which acts as 
a connector to the other end of the communication. The 
maximum number of ports is predefined and allocated in an 
array, so that ports can be accessed through the index in the 
array. The maximum number of client ports is limited by 
32 (5 bits). A port data structure is defined as follows: 
 
typedef struct { 
 
  _BIT         status;   //TURE: in use; FALSE; in idle 
  _U08         portID;   //ID of the client port 
  _BIT     direction;  //client or server 
  _U08    type;      //broadcast, individual or group 
  MAC_ID   macID;     //8 or 17 bit ID of the destination 
  MDCN_FIFO *fifo;    //its receive FIFO queue 
  pthread_t thread;    //thread running on the port 
 
} MDCN_Port; 
where MDCN_FIFO is a queue that receives messages 
directing to that port. In the case of broadcast or group 
communication, a client can have many servers. In order to 
receive replies with large data sizes composed of many 
fragments from many servers, MDCN_FIFO is defined as 
a list of FIFO queues, so that a port can get replies from 
many sources, each of which is directed to one queue. The 
mechanisms for selecting the right FIFO for push and pop 
functions are implemented. 
 The MDCN_FIFO is defined as follows: 
 
typedef struct MDCN_FIFO_STRUCT { 
 pthread_mutex_t  mutex; //multi-thread protection 
  pthread_cond_t   cond;   //conditional variable        

DATA      queue[FIFO_SIZE]; //FIFO queue 
   _U16       head; //head of the queue 
   _U16      tail; //tail of the queue 



   _U16      size; //number of elements  
MAC_ID     source; //source of reply 

   struct MDCN_FIFO_STRUCT  *next; //linked queue  
} MDCN_FIFO; 
 
where mutex is for the multi-threaded access protection, 
and cond is for conditional blocking when the queue is 
empty for pop or when the queue is full for push. The 
MDCN write operation will put the fragmented data frames 
directly in the CANpie output queue, by recording source 
in the first byte, the direction and port ID of the port in the 
second byte, for each data frame. The MDCN read 
operation gets a set of data frames from the first non-empty 
FIFO queue of the port, and assembles the fragmented data 
frames to a message if necessary. If the port is client and its 
type is group or broadcast, the user has the responsibility 
for reading all the messages from all the sources by calling 
the read function as many times as necessary; use the 
timeout read to make sure all replies are read. 

4.3 MDCN Initialization and Daemon 
Each node for MDCN has to be initialized before calling 
any MDCN functions except the function for set MAC ID, 
which has to be done before the initialization.  Initialization 
process initializes communication channels and data 
structures, sets up receiving message buffers for special, 
individual and broadcast messages, finally starts the 
MDCN gateway daemon, the flowchart for the function of 
the daemon is shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: MDCN gateway daemon 
 
If the message is from a client, then portID and source will 
be used for finding the corresponding port, otherwise if it is 
from a server, portID is the index of the port. Also, if the 
message is from a server and the type of the port is group 
or broadcast, and if that message is fragmented, the 
message will be further de-multiplexed to the 
MDCN_FIFO of a single source. In this implementation, 
I/O messages are processed directly in MDCN daemons; 

port messages are dispatched to corresponding queues, and 
processed by separate threads/processes.  
 There are four I/O messages implemented so far, create 
and destroy connections, add and remove groups. The 
request for create connection from a client will be pushed 
to the connection request queue, which will be accessed by 
AcceptConnection() called from the server. The requests 
for destroy connection, add or remove groups are 
processed directly in the daemon loop; destroy connection 
will remove the active server port, add group will record 
the group and also allocate a message buffer from the CAN 
controller for receiving group messages, and remove group 
will remove the group from the list and also de-allocate the 
message buffer. 

5. MDCN Bridging 
Even though MDCN can address up to 100,000 nodes in 
the extended CAN format, CAN has the limitation for the 
maximum numbers of nodes in any single bus. Bridges are 
necessary for a system to be scalable. In general, a bridge is 
a node with more than one channel; any two channels from 
the same or different nodes can be connected. A bridge has 
a routing table and forwards messages from one bus to 
another. In PolyBot application, a node module acts as a 
bridge; it has six channels. A communication network with 
bridges consists of more than one bus. MDCN APIs are 
transparent on whether there is a single or bridged CANbus 
network. An MDCN bridge is also an MDCN node.  The 
MDCN bridge is designed and implemented based on the 
ANSI/IEEE Standard on “Media Access Control (MAC) 
Bridges”, 802.1D. Since most part of the bridge code is 
standard, we will only describe the connection between 
MDCN nodes and MDCN bridges. 

The initialization process for the bridges also starts the 
MDCN bridge daemon, in addition to the MDCN daemon, 
since in general, bridge itself also acts as a communication 
node. There are n output queues for n channels, but only 
one input queue, which receives incoming non-special 
messages from all channels targeted to that node. In 
addition, there is a bridge messages queue for the bridge 
daemon. The receive handler for the bridge called from the 
interrupt routine dispatches the messages according to the 
IDs; it first filters out and processes the special messages. 
There are three special messages: 0x000 for 
synchronization, 0x100 for registration request for all 
MDCN nodes, and 0x200 for bridge related information 
that shall be processed by bridges only. The 
synchronization message will generate a synchronization 
event; a registration request message will trigger a 
registration message to send back through the receiving 
channel. All bridge related information received by bridges 
are pushed into the bridge queue and processed by the 
bridge daemon. For a non-special message, if the receiving 
channel is active, it either pushes the message to the input 
queue that shall be processed by the MDCN daemon and/or 
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queue 

Is a port  msg? 

Push msg to the
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Execute 
I/O msg 

yes 

no 



forward the message to other active channels. Figure 3 
shows the flowchart for the bridge receive handler.  

The bridge daemon handles all the messages to the 
bridge queue. There are three types of messages: 
configuration message CONFIG_BPDU_TYPE, topology 
change notice message TCN_BPDU_TYPE and register 
message REGISTER_TYPE.  The first two types of 
messages are handled the same way as the IEEE standard, 
the last type is for updating the forwarding table. The 
request for register can be triggered every time the channel 
becomes enabled, and/or every fixed sampling time for 
verification if necessary, by setting the time interval. There 
are two types of registry: local and global. Local registry 
only updates the forwarding table in the current bridge and 
global registry propagates the request to all the other 
enabled channels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 3. Bridge Receiving Handler 

 
 

 We should point out that in the case of bridged networks, 
messages across the bridges will be delayed. In the case of 
broadcast or group communication in a bridged network, 
nodes in different buses receive the same message at 
different times. 

6. Conclusions 
We have presented here MDCN: Massively Distributed 
Control Nets as a higher level protocol for CANbus based 
communications, and its implementation for MPC555 
TouCAN controllers and the host PC. MDCN supports 
three types of communication: individual, group and 
broadcast, and can address up to 254 nodes in standard 
CAN format and 100,000 nodes in extended CAN format. 
With the integration of bridging, it is totally transparent 
from users point of view if it is a one bus or a connected set 
of buses. MDCN has been used for implementing 
Attribute/Service Model (Zhang, Roufas and Yim, 
2001)(Zhang et. al, 2002), with CAN as the communication 
medium, for modular self-reconfiguable robots.  However, 
MDCN is a general protocol that can be applied not only to 
the modular self-reconfigurable robots but also to any 
industry control platform using CANbus. 
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