
Massively Distributed Control Nets for Modular Reconfigurable Robots

Ying Zhang, Kimon Roufas, Mark Yim, Craig Eldershaw

Systems and Practices Lab
Palo Alto Research Center

Palo Alto, CA 94304
 {yzhang, kroufas, yim, celdersh}@parc.com

Abstract
Massively Distributed Control Nets (MDCN) is a CAN
(Controller Area Network) based high-level protocol that
has the following features: (1) Three types of
communication: individual, group and broadcast, with eight
priority levels. (2) Addressing of up to 254 nodes and
groups in standard CAN format, and up to 100,000’s in
extended CAN format. (3) I/O (node-to-node) and port
(point/process-to-point/process) communications, where I/O
is mostly reserved for system processes with high priorities
and short message sizes, and port is for user applications,
with lower priorities and possibly large message sizes.
Compared to the existing widely used high-level CAN
protocols, MDCN can address more communication nodes,
has simpler APIs, is easier and more efficient to implement.
Also the bridge protocol is transparent to users as whether it
is a single CAN bus or a networked CAN buses. MDCN is
currently implemented in C for MPC555 TouCAN
controller on the Real-Time Operating Systems vxWorks,
and in Java on host PC. The API is designed and
implemented for multi-threaded environments. MDCN is a
general protocol that not only can be applied to modular
robots, but also can be applied to any industry control or
automation using CAN bus network with hundreds of
communication nodes.

1. Introduction
Modular, self-reconfigurable robots show the promise of
great versatility, robustness and low cost (Yim, Duff and
Roufas, 2000). However, programming such robots for
specific tasks, with hundreds of modules and each of which
with multiple actuators and sensors, can be tedious and
error-prone. The extreme versatility of the modular systems
requires a new paradigm in programming (Zhang, Roufas
and Yim, 2001). This paper presents the underlying
communication structure for a type of modular self-
reconfigurable robot, named PolyBot (Figure 1), developed
at Palo Alto Research Center [http://www.parc.com/
modrobots/PolyBot/polybot.htm].
 PolyBot has been designed for applications including
planetary exploration, undersea mining, search and rescue
and other tasks in unstructured, unknown environments.
PolyBot consists of two types of modules: segment
modules and node modules. A segment module is
composed of two identical connection plates, actuation

mechanisms for one degree of freedom rotation, and a
Motorola PowerPC MPC555 embedded processor with
448K internal flash ROM and 1M of external RAM, which
also has two internal CAN (Controller Area Network)
controllers. The connection plate serves two purposes: to
attach two modules physically together as well as
electrically; both power and communications are passed
from module to module. Two connection plates can be
attached and detached via latch actuation, which enables
self-reconfiguration. Each connection plate has four IR
phototransistors and four IR LEDs. Combinations of IR
intensity measurements allow the determination of the
relative six degrees of freedom position and orientation of
the mating plates, which aids in the closed loop docking of
two modules (Roufas et. al, 2001). Each segment module
communicates over a global CAN bus with up to 1M bps.
A node module is a rigid cube made of six connection
plates (one for each face). In addition to a MPC555, there
are six external CAN controllers, each for a connection
plate. A node module serves three purposes: (1) to allow
for non-serial chains/parallel structures, (2) to house higher
power computation and power supplies, and (3) to perform
transparent media access control (MAC) layer bridging
between CAN networks.

Figure 1: PolyBot in a spider configuration

 The PolyBot systems have demonstrated versatility by
showing multiple modes of locomotion with a variety of
characteristics, distributed manipulation and the ability to
self-reconfigure (Yim, Duff and Roufas, 2000)(Roufas et.

al, 2001). For the end of this year, there will be 100 to 200
modules built and connected with various configurations.
 Since the electrical design of PolyBot uses MPC555 that
has two internal CAN controllers, the use of CAN for
communication among modules is convenient. CAN has
gained widespread popularity not only in the automotive
industry but also in the industrial automation arena
(Lawrenz, 1997). CAN has also proven that it fits very well
into the suite of field-buses or sensor/actuator buses
because of its low price, multiple sources, highly robust
performance and already widespread acceptance (Negley,
2000). However, CAN protocol is low level, directly linked
to the physical media, which makes the communication
programming not only tedious but also ad hoc. Several
high-level CAN protocols exist and are widely used, such
as CANopen, DeviceNet, SDS and OSEK [http://www.can-
cia.de/]. For our application (modular robots), the main
limitation of these protocols is their inability to address
more than 200 communication nodes. Furthermore, most of
these protocols are far more complex and less efficient than
our purpose requires.
 Massively Distributed Control Nets (MDCN) is a CAN
based high-level protocol that has the following features:
(1) Three types of communication: individual, group and
broadcast, with eight priority levels. (2) Addressing of up
to 254 nodes and groups in standard CAN format, and up
to 100,000’s in extended CAN format. (3) I/O (node-to-
node) and port (point/process-to-point/process)
communications, where I/O is mostly reserved for system
processes with high priorities and short message sizes, and
port is for user applications, with lower priorities and
possibly large message sizes. Compared to the existing
widely used high-level CAN protocols, MDCN can address
more communication nodes, has simpler APIs, is easier and
more efficient to implement. Also the protocol is
transparent to either a single CAN bus or a networked CAN
buses. MDCN is currently implemented in C for MPC555
TouCAN controller on the Real-Time Operating Systems
vxWorks, and in Java on host PC. The API is designed and
implemented for multi-threaded environments. MDCN is a
general protocol that not only can be applied to modular
robots, but also can be applied to any industry control or
automation using CAN bus network with hundreds of
communication nodes.
 The rest of this paper is organized as follows. Section 2
describes MDCN functionality and APIs. Section 3
presents MDCN protocols. Section 4 illustrates the
implementations for embedded processors and the host PC.
Section 5 discusses the bridging protocol and
implementation. Section 6 concludes the paper.

2. MDCN APIs
Each CAN message provides a standard 11 bits or an
extended 29 bits of prioritized destination identification,
and eight bytes of data. Priority arbitration, error detection
and re-transmission are all handled by the CAN controller
hardware (Lawrenz, 1997). However, CAN is low level,

directly linked to the physical media, which makes the
communication programming not only tedious but also ad
hoc. For most applications, a higher-level protocol is
necessary. In general, a higher-level protocol handles the
following issues:

• Communication buffers: ingress and egress
queues.

• Communication configuration: master/slave,
point-to-point, broadcast, group communications.

• Communication patterns: block/non-block
read/write, confirmation or handshaking,
subscribe/publish structures, etc.

• Fragmentation and reassembly of large messages.
• High-level error detection and correction.

Several high-level CAN protocols exist and are widely
used, such as CANopen, DeviceNet, SDS and OSEK
(Lawrenz, 1997). For our application, the main limitation
of these protocols is their inability to address more than
200 communication nodes, which restricts the scalability of
modular reconfigurable systems. Furthermore, most of
these protocols are far more complex than our purpose
requires.
 We have developed a high-level CAN protocol, called
Massively Distributed Control Nets (MDCN). Each
communication node (simply refer to node in the rest of the
text) on a CAN bus has a unique ID, refer as MAC ID, and
each node can belong to a set of groups. MDCN features a
simple set of APIs, with the following functionalities:

• Three types of communication: individual, group
and broadcast, with eight priority levels.

• Addressing of up to 254 nodes and groups in
standard CAN format (8 out of 11 ID bits for
addresses), and up to 100,000’s in extended CAN
format (17 out of 29 ID bits for addresses).

• I/O (node-to-node) and port (point/process-to-
point/process) communications, where the I/O
type is mostly reserved for system processes with
high priorities and short message sizes that can be
encoded in one data frame, and the port type is for
user applications, with lower priorities and
possibly large message sizes encoded possibly in
many data frames.

The set of MDCN APIs is very similar to those in socket
programming, including functions such as create and
destroy port connections, add and remove groups,
read/write a message from/to a port. For example, the
following code fragment shows that a client is creating a
connection and then sending out a message, and the server
is accepting the connection and receiving the message.
Client:
 //create connection request
 port = createConnection(type, id);
 //write to the connection port
 write(port, message, length, priority);
Server:
 //accept the connection request

port = acceptConnection();

//read from the connection port
 read(port, message, &length, timeout);

In the above code fragment, type can be INDIVIDUAL,
GROUP, or BROADCAST. This allows addressing
individual nodes, subsets of nodes (GROUP) or all nodes
(BROADCAST). The id parameter is the communication
MAC ID for INDIVIDUAL type, or group ID for GROUP
type, and read can be blocking or non-blocking depending
on the timeout value: -1 means blocking, 0 means non-
blocking and any positive number indicates the maximum
block time. Before using any MDCN functions except the
setMAC_ID function, MDCN init function has to be
called, which initializes CAN channels and data structures,
as well as starts the MDCN daemon. All the nodes have
unique and constant MAC IDs after initialization.
 Each port can associate with a port thread which co-
existent with the port and will be destroyed whenever the
port is destroyed. Port threads are mostly used for
client/server applications, such that whenever a connection
is established between the two parities, the server port runs
a daemon for accepting and replying the client’s requests.
 In addition, MDCN provides special functions for
synchronizing clocks and events in a shared bus. The
synchronization among nodes is very important for many
real-time applications. For example in the PolyBot
situation, IR functions on the two opposing plates have to
start at the same time to obtain the correct 6D offset
reading (Roufas et. al, 2001).
 MDCN is also extendable. In addition to create/destroy
connections, add/remove groups, which are I/O
communications, users can define their own I/O commands.
I/O communications are efficient for short (six bytes of
data) messages and non-blocking data processing. The
difference between port and I/O messages in
implementation will be presented in the following sections.

3. MDCN Protocol
Each CAN message provides a standard 11 bits or an
extended 29 bits of prioritized destination identification,
and eight bytes of data. Priority arbitration, error detection
and re-transmission are all handled by the CAN controller
hardware.
 For standard identification, the 11 bits are assigned as
follows in MDCN protocol:

0 1 2 3 4 5 6 7 8 9 10
P
0

P
1

P
2

A0 A1 A2 A3 A4 A5 A6 A7

The first three bits are for priorities, based on the
arbitration mechanism built in CAN controllers; so there
are eight levels of priorities. The last eight bits are used for
MDCN addresses. We divide the whole address space into
four categories:

• Special messages: address 0
• Broadcast messages: address 1

• Group messages: address 2 upward
• Individual messages: address 255 downward

There are 8 special messages. The receiving of the special
messages shall cause the reset of the CAN clock. The one
with the highest priority (ID 0x000) is reserved for
generating a synchronization signal. Tasks running on
different nodes can be synchronized while waiting for that
signal, if they share the same bus. Also ID 0x100 is used
for registration request for nodes from bridges, and ID
0x200 is used for (BPDU) bridging protocol data units for
bridges, --- in our application, bridges are nodes as well, ---
the rest of special messages are undefined so far and can be
extended later. Broadcast messages are messages that shall
be received for all nodes in the network, bridged or not.
The individual messages are for individual nodes. Each
node is assigned a MAC ID. The MDCN address is (255 –
MAC) for individual messages. An individual message
shall be received by only one node in the network,
assuming all the nodes have different MAC IDs. In
addition to broadcast and individual messages, there are
group messages. However, the total number of groups plus
the total number of nodes cannot exceed 254 for the
standard CAN format. For a group with group ID, the
MDCN address is (2 + ID). Each node can associate with a
set of groups. If a node is associated with a group, the node
is a member of that group. A group message shall be
received by all members of that group, no matter where the
node is in a bridged network.
 Each CAN message data frame can have maximum 8
bytes of data; the first two bytes are reserved for MDCN
headers. In particular, the first byte is for storing the MAC
ID of the source, and the second is for recording the
format:

0 1 2 3 4 5 6 7
FF Tp Dir P0 P1 P2 P3 P4

where FF is Fragment Flag. If FF is 1, it is a fragmented
message, i.e., message that consists of multiple CAN
frames; otherwise, it is a non-fragmented message. If FF is
1, Tp indicates if it is the first frame in a series of
fragmented messages, i.e., if Tp is 1, it is the first, and
otherwise it is not. For the first fragment frame, three more
data bytes are used for recording the length of the total
message, i.e., the next two data bytes are reserved for
recording the number of frames--the total number of frames
can be 216--and the following byte is for recording the
number of bytes in the last frame. On the other hand, if FF
is 0, Tp indicates if it is a port or an I/O message. If Tp is
1, it is a port message, and otherwise it is an I/O message.
All the fragmented messages are port messages, i.e., I/O
messages cannot be fragmented. I/O messages are for
system commands or high priority communications. An I/O
message is sent to the node(s) it is targeted, a port message
is further dispatched to a queue and then accessed by the
correspondent port through the read function. The third bit
Dir indicates the direction of the communication, i.e.,
client/request or server/respond. The end that requests for

establishing the communication is called client and the end
that confirms the request is called server. A node can have
many clients and servers running at the same time. The last
5 bits indicate the client port ID of the communication.
Therefore, there are maximum 32 client ports that can be
active at the same time in any node.
 When the extended CAN format is used, the 29 bits ID is
assigned as follows: the first three bits are still for
priorities; there are 8 levels of priorities, the last 17 bits are
for MDCN addresses, and the middle 9 bits are for the first
9 bits of the MAC ID source. There are also 8 special
messages with MDCN address 0, and two data bytes
reserved: the first byte is the last 8 bits of MAC ID source
and the second byte stores the same information as the
standard format. The extended format can address up to
(217 – 2), i.e., more than 100,000, groups and individual
nodes.

4. MDCN Implementation
MDCN has been implemented on the embedded processors
MPC555 in C using RTOS vxWorks, and on the host PC in
Java. In the former case, IEEE standard POSIX pthreads
are used, so that the code can be migrated to other
operating systems easily. The implementation enables the
communication between the host PC and the target, as well
as the communication among target processors in a uniform
format. CAN drivers are implemented differently for
embedded chips and for the host PC, but the high level
MDCN implementations share the same structure.

4.1 CAN Drivers
4.1.1 MPC555 TouCAN Driver
A modified version of CANpie
[http://www.microcontrol.net/CANpie/index.html],
mCANpie, is implemented for MPC555 TouCAN driver.
For a node with one CAN controller (channel), an input
queue and an output queue are initialized. In addition,
buffers are allocated: one for receiving special messages
(address 00), one for sending special messages, one for
receiving individual messages, one for receiving broadcast
messages (address 01), and one for sending regular I/O or
port messages. Buffers for receiving group messages will
be allocated when the node is added to the group, and be
deallocated when the node is removed from the group. For
MPC555 TouCAN, each node can be associated with at
most 11 groups since there are total 16 buffers, 5 of which
are already used. The multi-buffer makes the
implementation efficient since the filters are hardware
instead of software; each node will only receive the
messages sent to it. For a bridge, multi-buffer is not
necessary since it should receive all the messages sent on
the bus.
 The input and output queues are implemented to be
thread-safe, so that MDCN APIs works in multi-threaded
environments. Also, the CAN driver is interrupt driven
rather than frequent pulling. The receiver handler and the

transmit handler will be triggered whenever an input comes
in or an output is sent out, in the interrupt routine. The
transmit handler would simply take out another data frame
from the output queue and send it out. The receiver handler
for a node is simple, which pushes any non-special
messages to the input queue. For special messages, it will
call the correspondent routines accordingly, such as
triggering a synchronization mechanism, or sending out a
register message to bridges. The receiving handler for
bridges will be discussed in Section 5.

4.1.2 Host PC CANCardX Driver
For PC, the CANalyzer from Vector Informatic GmbH
[http://www.vector-informatik.de/] is used. A JINI interface
is implemented to call read and writer functions from the
CANDriver. The host PC does not process special
messages, nor it belongs to any group. Like any node, the
host has a MAC ID. It receives individual and broadcast
messages only, even though it can still sends group
messages.

4.2 MDCN Ports and FIFOs
The main data structure for MDCN is a port, which acts as
a connector to the other end of the communication. The
maximum number of ports is predefined and allocated in an
array, so that ports can be accessed through the index in the
array. The maximum number of client ports is limited by
32 (5 bits). A port data structure is defined as follows:

typedef struct {

 _BIT status; //TURE: in use; FALSE; in idle
 _U08 portID; //ID of the client port
 _BIT direction; //client or server
 _U08 type; //broadcast, individual or group
 MAC_ID macID; //8 or 17 bit ID of the destination
 MDCN_FIFO *fifo; //its receive FIFO queue
 pthread_t thread; //thread running on the port

} MDCN_Port;
where MDCN_FIFO is a queue that receives messages
directing to that port. In the case of broadcast or group
communication, a client can have many servers. In order to
receive replies with large data sizes composed of many
fragments from many servers, MDCN_FIFO is defined as
a list of FIFO queues, so that a port can get replies from
many sources, each of which is directed to one queue. The
mechanisms for selecting the right FIFO for push and pop
functions are implemented.
 The MDCN_FIFO is defined as follows:

typedef struct MDCN_FIFO_STRUCT {
 pthread_mutex_t mutex; //multi-thread protection
 pthread_cond_t cond; //conditional variable

DATA queue[FIFO_SIZE]; //FIFO queue
 _U16 head; //head of the queue
 _U16 tail; //tail of the queue

 _U16 size; //number of elements
MAC_ID source; //source of reply

 struct MDCN_FIFO_STRUCT *next; //linked queue
} MDCN_FIFO;

where mutex is for the multi-threaded access protection,
and cond is for conditional blocking when the queue is
empty for pop or when the queue is full for push. The
MDCN write operation will put the fragmented data frames
directly in the CANpie output queue, by recording source
in the first byte, the direction and port ID of the port in the
second byte, for each data frame. The MDCN read
operation gets a set of data frames from the first non-empty
FIFO queue of the port, and assembles the fragmented data
frames to a message if necessary. If the port is client and its
type is group or broadcast, the user has the responsibility
for reading all the messages from all the sources by calling
the read function as many times as necessary; use the
timeout read to make sure all replies are read.

4.3 MDCN Initialization and Daemon
Each node for MDCN has to be initialized before calling
any MDCN functions except the function for set MAC ID,
which has to be done before the initialization. Initialization
process initializes communication channels and data
structures, sets up receiving message buffers for special,
individual and broadcast messages, finally starts the
MDCN gateway daemon, the flowchart for the function of
the daemon is shown in Figure 2.

Figure 2: MDCN gateway daemon

If the message is from a client, then portID and source will
be used for finding the corresponding port, otherwise if it is
from a server, portID is the index of the port. Also, if the
message is from a server and the type of the port is group
or broadcast, and if that message is fragmented, the
message will be further de-multiplexed to the
MDCN_FIFO of a single source. In this implementation,
I/O messages are processed directly in MDCN daemons;

port messages are dispatched to corresponding queues, and
processed by separate threads/processes.
 There are four I/O messages implemented so far, create
and destroy connections, add and remove groups. The
request for create connection from a client will be pushed
to the connection request queue, which will be accessed by
AcceptConnection() called from the server. The requests
for destroy connection, add or remove groups are
processed directly in the daemon loop; destroy connection
will remove the active server port, add group will record
the group and also allocate a message buffer from the CAN
controller for receiving group messages, and remove group
will remove the group from the list and also de-allocate the
message buffer.

5. MDCN Bridging
Even though MDCN can address up to 100,000 nodes in
the extended CAN format, CAN has the limitation for the
maximum numbers of nodes in any single bus. Bridges are
necessary for a system to be scalable. In general, a bridge is
a node with more than one channel; any two channels from
the same or different nodes can be connected. A bridge has
a routing table and forwards messages from one bus to
another. In PolyBot application, a node module acts as a
bridge; it has six channels. A communication network with
bridges consists of more than one bus. MDCN APIs are
transparent on whether there is a single or bridged CANbus
network. An MDCN bridge is also an MDCN node. The
MDCN bridge is designed and implemented based on the
ANSI/IEEE Standard on “Media Access Control (MAC)
Bridges”, 802.1D. Since most part of the bridge code is
standard, we will only describe the connection between
MDCN nodes and MDCN bridges.

The initialization process for the bridges also starts the
MDCN bridge daemon, in addition to the MDCN daemon,
since in general, bridge itself also acts as a communication
node. There are n output queues for n channels, but only
one input queue, which receives incoming non-special
messages from all channels targeted to that node. In
addition, there is a bridge messages queue for the bridge
daemon. The receive handler for the bridge called from the
interrupt routine dispatches the messages according to the
IDs; it first filters out and processes the special messages.
There are three special messages: 0x000 for
synchronization, 0x100 for registration request for all
MDCN nodes, and 0x200 for bridge related information
that shall be processed by bridges only. The
synchronization message will generate a synchronization
event; a registration request message will trigger a
registration message to send back through the receiving
channel. All bridge related information received by bridges
are pushed into the bridge queue and processed by the
bridge daemon. For a non-special message, if the receiving
channel is active, it either pushes the message to the input
queue that shall be processed by the MDCN daemon and/or

Pop a frame
from the input
queue

Is a port msg?

Push msg to the
corresponding queue

Execute
I/O msg

yes

no

forward the message to other active channels. Figure 3
shows the flowchart for the bridge receive handler.

The bridge daemon handles all the messages to the
bridge queue. There are three types of messages:
configuration message CONFIG_BPDU_TYPE, topology
change notice message TCN_BPDU_TYPE and register
message REGISTER_TYPE. The first two types of
messages are handled the same way as the IEEE standard,
the last type is for updating the forwarding table. The
request for register can be triggered every time the channel
becomes enabled, and/or every fixed sampling time for
verification if necessary, by setting the time interval. There
are two types of registry: local and global. Local registry
only updates the forwarding table in the current bridge and
global registry propagates the request to all the other
enabled channels.

Figure 3. Bridge Receiving Handler

 We should point out that in the case of bridged networks,
messages across the bridges will be delayed. In the case of
broadcast or group communication in a bridged network,
nodes in different buses receive the same message at
different times.

6. Conclusions
We have presented here MDCN: Massively Distributed
Control Nets as a higher level protocol for CANbus based
communications, and its implementation for MPC555
TouCAN controllers and the host PC. MDCN supports
three types of communication: individual, group and
broadcast, and can address up to 254 nodes in standard
CAN format and 100,000 nodes in extended CAN format.
With the integration of bridging, it is totally transparent
from users point of view if it is a one bus or a connected set
of buses. MDCN has been used for implementing
Attribute/Service Model (Zhang, Roufas and Yim,
2001)(Zhang et. al, 2002), with CAN as the communication
medium, for modular self-reconfiguable robots. However,
MDCN is a general protocol that can be applied not only to
the modular self-reconfigurable robots but also to any
industry control platform using CANbus.

References

[1] W. Lawrenz, CAN System Engineering: From Theory
to Practical Applications, Springer, 1997.

[2] M. Yim, D. Duff, K. Roufas, “PolyBot: a Modular
Reconfigurable Robot” Proc. of the IEEE Int. Conf. on
Robotics and Automation, April 2000.

[3] B. Negley, “Getting Control Through CAN,” Sensors,
vol. 17, no. 10, pp18-34, October 2000, also available
in http://www.sensorsmag.com/.

[4] K. Roufas, Y. Zhang, D. Duff, M. Yim, “Six Degree of
Freedom Sensing for Docking using IR LED Emitters
and Receivers,” Experimental Robotics VII, Lecture
Notes in Control and Information Sciences 271, D.
Rus and S. Singh Eds. Springer, 2001.

[5] Y. Zhang, K. Roufas, M. Yim, “Software Architecture
for Self-Reconfiguable Robots”, Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, October, 2001.

[6] Y. Zhang, M. Yim, K. Roufas, C. Eldershaw and D.
Duff, “Attribute/Service Model: Design Patterns for
Distributed Coordination of Actuators, Sensors and
Tasks”, submitted, 2002.

Acknowledgement
This work is funded in part by the Defense Advanced
Research Project Agency (DARPA) contract # MDA972-
98-C-0009.

special message
processing

channel active

special msg

MDCN msg
for this node

broadcast
or group?

broadcast forwarding

local registration

push to the input
queue

yes

no

no

no

no

yes

yes

yes

