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Abstract—In this paper we present a method for distributed
fault tolerance in a modular robotic system. We describe an im-
plementation of this method on the CKBot system. In particular,
we broadcast infrared (IR) signals to modules which collaboratively
vote on a majority course of action. Various gait selections for a 7
module caterpillar and a 16 module quadruped with a faulty subset
of IR receivers have been verified to demonstrate the algorithm’s
robustness. We conclude the paper with a discussion of modes of fault
tolerances and this method’s applicability to other modular robotic
systems.

Index Terms—Modular robots, fault tolerance

1. INTRODUCTION

Modular robotic systems are comprised of modules that can
be arranged in different ways to form various shapes. Modular
self-reconfigurablerobotic systems can rearrange their own
modules. These different arrangements allow these systems
to be very versatile and adaptive to suit a wide variety of
situations.

Since these systems are designed to be reconfigured, each
module is in some sense a self-contained unit. Most of the
modules in these systems come equipped with their own
embedded processors [1], [2], [3], [4], [5], [6], [7], [8]. In-
dividual processors on each module allow systems to be more
readily scaled upward since computational resources increases
with number of modules. Processes run locally near locations
where actions need to take place. For instance, computationfor
motor control and sensor processing can occur on the modules
which share the motor and sensors. However, complications
start to occur when groups of modules must coordinate their
actions (e.g., a chain of modules which form a robot arm must
coordinate their motions to control the end effector path).

Control may be centralized or decentralized [9], [10], [11],
[12], [13], [14]. Often times, coordinated tasks such as end
effector kinematic control require some synchronization and
communication between modules. Centralized control, where
an off-board PC or designated on-board processor orchestrates
the overall execution of tasks has the advantage of being
simple to implement and often is sufficient for accomplish-

ing a variety of tasks. For example, on CKBot, the system
used in the following work, we have demonstrated dynamic
rolling [15] and [16] bio-inspired gaits which use centralized
controllers.

However, central controllers have a key weakness in that
they are inherently fault intolerant. If the central controller
breaks, then the system as a whole is lost without its leader.
This shortcoming effectively limits a purely centralized sys-
tem’s ability to realize the goal of robustness for modular
robots. In an effort to study and develop a more robust control
scheme, we devised a decentralized approach for controlling
clusters of CKBot modules.

This paper focuses on fault tolerant distributed control
through collective decision making. By sharing information
and making decisions as a group, the system is more robust
in the case of failures (in this work, IR communication
reception). Our basic approach is for a group of modules all
observing one signal to share the observed data and determine
the best decision, even if some of the modules have faulty IR
receivers or communication failures.

There is a variety of work related to robust control for
modular self-reconfigurable robots using distributed control.
In [17], [10] global behaviors such as locomotion are created
through local cyclic behaviors. No central controller exists
and synchronization occurs through local message passing.
This system also handles changes in the number of modules
(additions or deletions) during the course of its runtime. This
style of robustness exploits the cyclic nature of gaits and is
difficult to expand to more general, high-level control tasks.

Other related work in the area of modular robot robustness is
self-repair, such as [18], [19], [20], [21] where robot modules
repair themselves, by putting themselves back together or
disposing of failing modules. In this case, self-repair occurs
after failure, whereas the proposed work intends to deal with
failures in module communication resulting in more robust
information processing.



Fig. 1. A CKBot module with a schematic representation. The arrow
indicates the rotational axis and the numbers designate the locations
of the seven IR ports.

2. EXPERIMENTAL SYSTEM

2.1. CKBot Module

For this work, we use the Connector Kinetic roBot (CKBot).
Fig. 1 shows a CKBot module with four connection ports
and the corresponding two-dimensional representation. Each
port except the bottom port has two IR transmitter (TX) and
receiver (RX) pairs. Fig. 2 shows the layout of the seven IR
pairs. These IR pairs can be used for a variety of applications;
in this work, the RX LEDS are used to receive messages
from high-intensity IR broadcasting sources. In other works,
the IR LEDS have been used for local (neighbor-to-neighbor)
communication, ground contact detection [15], configuration
recognition [22], and docking detection [20].

Each module has a180
◦ rotational degree-of-freedom,

powered by a high-end RC servo. On-board processing is
done with a Microchip PIC2680 with on-chip Control Area
Network (CAN) capability [23]. For connectivity, two modules
are connected physically and electrically (modules share power
(battery or DC power source) and CAN communication) by
inserting a 20 pin header between two modules. In this work,
they are arranged in various configurations then firmly attached
with screws, though in other scenarios, magnet faces are
employed [20] to allow automatic reconfiguration. All modules
have their own unique ID and can communicate to one another
on the CAN. Therefore, any module can talk to any other in
a given connected system.

Each CKBot module’s processor independently handles its
servo position actuation, CAN communication and IR data
detection.

2.2. IR Broadcaster

In this work, a configuration of CKBot modules receives
commands from arrays of high-intensity IR LEDs that blink
commands in unison. In this way, modules can individually
receive IR messages and share their observations with one
another via the CAN. The particular data broadcasted from the
IR transmitter boards is designated by a user at a PC which
inputs commands through a simple graphical user interface
[24].

A reader familiar with IR signaling may have wondered
why we chose to use so many emitters in unison (instead of

Fig. 2. Layout of the seven IR transmitter and receiver pairs on the
four faces of a CKBot module.

Fig. 3. Seven module caterpillar receiving IR signals from broad-
casting boards. Digital camera in night vision mode captures the
illuminated IR LEDS.

a few IR emitters similar to those used for television remote
controls). The answer is simply because the IR receivers on
the modules were designed primarily for module-to-module
local communication and very close proximity retro-reflective
distance measurements. As such, large arrays of LED emitters
were used to produce the IR intensity required for the mod-
ules to receive the trasmitted data over the given range and
distances.

3. DISTRIBUTED IR FAULT TOLERANCE

To demonstrate distributed fault tolerance, the CKBot sys-
tem is designed so that modules in a given configuration
listen to globally broadcasted IR signals and subsequently
communicate with one another to decide on actions, even
in the presence of faulty modules. Experiments consist of
configurations flooded with IR signals from two sides. The
modules use received data to share and compare with all
others in a given state. If amajority of modules agree on an
interpretation of the IR signal, the system as a whole chooses
the action corresponding to the majority’s decision. In our
work, actions are simple commands such as “go forward,”
“go backward,” “stop,” “turn,” “go limp,” etc. Experimentsare
performed on two configurations: a seven-module caterpillar
structure (Fig. 3) and a sixteen-module quadruped structure
(Fig. 4).

A majority is needed for a configuration to decide on an ac-
tion; therefore, up to half of the modules in the system can be



Fig. 4. Sixteen module quadruped receiving IR signals from
broadcasting boards. Digital camera in night vision mode captures
the illuminated IR LEDS.
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Fig. 5. Three-module schematic of IR signal observation and
subsequent sharing of data between the modules. Modules 1 and
2 correctly receive the message as “Walk,” where as module 3
incorrectly interprets the message as “Turn.” All modules come to
the same majority decision to “Walk.”

in error (e.g., faulty receivers or dropped CAN messages). In
this way, the system is robust and tolerant to certain hardware
and software failures during the course of its runtime. Fig.5
illustrates the basic idea behind this approach. Note that each
module ends up with the same list of observedvotes, including
each module’s own observations.

From a practical standpoint, we have found this implemen-
tation to be useful as we have observed IR signals to be some-
what erratic. Since the IR receivers must convert the analog
IR packets to binary pulses according to a certain baud rate,
it is common for bytes to be occasionally misinterpreted (e.g.,
0b00000110 can be confused with 0b00001110). Together
with simple occasional hardware issues (burned out or broken
off LEDs), this fault tolerance scheme has demonstrated a level
of robustness not possible with only one IR communication
path to configurations of modules.

Fig. 6 illustrates the fault tolerance state machine on each
CKBot module’s processor.

Basic features of the algorithm to note are that:
1) All modules create a list of all other modules in the

configuration.
2) Each module continually cycles through all 7 of its IR

RX ports, so the sources of data can come from any
direction.

3) When an IR signal is received, each module shares this
information with all others.

4) All modules record the sightings of all other modules.
5) From the list of sightings, all modules compute a ma-

jority.
6) The module with the lowest ID synchronizes the steps

for gaits.
7) The system as a whole continues with the decided action

(“walk,” “turn,” “stop,” etc.) until a new, different signal
is broadcasted and a new majority is computed.

With this algorithm, all CKBot modules in a given con-
figuration have complete knowledge of other modules in the
system and also the data that all modules observe from the IR
beacons. Each module building the complete list of modules
is possible through the logging and ordering ofheartbeats
that all modules broadcast on the CAN. Module heartbeats
are CAN messages broadcasted once per second from each
module specifying the sending module’s ID. Therefore, we
allow two seconds after boot up to allow time for at least one
heartbeat message from each module to be broadcasted. Each
module builds a module configuration list in the span of these
two initial seconds.

In a similar manner, the observations (majority votes) are
also broadcasted from each module upon IR sightings. When
a module receives an IR signal, an interrupt is triggered and
the observation is broadcast on the CAN. All modules receive
the identical CAN message and store it in a list of ordered
module votes.

The CKBot module hardware is organized in manner that
allows only one IR port to be accessible at a time. To allow
sufficient time for data reception, each CKBot CPU cycles
through the seven ports at a rate of 5 Hz. Therefore, to ensure
enough time for signals to be received and stored, we program
the IR broadcaster to send at a rate equal to double the rate
of port switching: 10 Hz. In this way, each of the IR receiver
ports is selected for listening in a span of time when at least
one IR message is broadcasted.

Because the broadcasters are sending identical messages
many times per second, the modules only share their obser-
vations if anew IR signal is detected. Therefore, the system
will carry along its selected task only until a majority of new
votes comes in and overrides the old majority decision. In this
way, decisions are made on-the-fly and the systems is tolerant
and adaptable to data and hardware glitches during the course
of its runtime.

Once an action is selected, all modules locally have the
same decision and the system is ready to carry out its task
as a unit. However, since the times to reach the final decision
may be off by up to half of a second, a coordinator module
whose sole purpose is to synchronize the time-critical steps of
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Fig. 6. Flow chart diagram of the processor state machine on each CKBot module.

a gait (each module’s position updates at a rate of 60 Hz) is
designated. The coordinator broadcasts “GO” commands on
the CAN which all modules (including the coordinator itself)
use for well-timed position control. We choose the lowest ID
in a given system of modules to be the coordinator; this choice
is ad-hoc as the particular ID and module is not significant.
If a system’s coordinator module were swapped with another,
then the next lowest would take over as coordinator and the
system would carry on seamlessly. All that is required is that
there be one coordinator, and this can be designated at any
time.

Modules that simply do not receive any IR signals because
they do not have access to the broadcasted signals are handled
by the algorithm and are effectively treated as faulty modules.
The two “shoulder” torso modules in the quadruped (Fig. 4)
are examples of this. All modules that either miss messages or
receive erroneous ones are overruled by a majority decision.

The issue of how individual modules know how to behave
within the overall structure is determined by each module’s
position in the group. In particular, the modules are arranged
in accordance with their unique IDs. Note that particular node
IDs are not significant, rather thevirtual node IDs that are
a simply an ordered mapping (e.g., actual IDs 0x12, 0x15,
0x23 mapped to virtual IDs 0x01, 0x02, 0x03, respectively).
Each module maintains a library of gaits in their local program
memory and selects individual motion primitives from these
gaits depending on their virtual ID. It is possible and may
be desirable to extend this approach to be isomorphic so that
reorderings of module arrangements do not affect the overall

motion of a given fault tolerant system, as studied in an earlier
paper [22].

As a side note, since all modules have identical programs,
we employed a CAN driven programming scheme which re-
programs all modules in a system simultaneously [25]. This is
in contrast to the more traditional approach of re-programming
each module individually and having a centralized controller
have a distinct type of program. The network programming
feature greatly facilitated the development of the distributed
fault tolerance algorithm.

3.1. System Gait Control

As mentioned earlier, modules select motion primitives
from gait tables according to their virtual node ID position
within the system. For example, Fig. 7 shows the gait control
table for the walking configuration (Fig. 4) to move forward.
Each module contains this gait information. In this table, the
columns are associated with modules in order of virtual node
ID, the rows correspond to gait steps, and the elements in
each table correspond to the angle in degrees of the joint for
that module in joint space. For instance, if module 0x81 was
second in the list of (0x77, 0x81, 0x92, ...) then module 0x81
would select the second column in Fig. 7 as its choice if the
majority action was to walk forward. Without this mapping
procedure, a module would select the wrong sequence of
actions and move inappropriately, even if correct majorities are
reached. For example, if module 0x81 in the above quadruped
example were to select gaits from column three instead of
column two, the robot would fall instead of walk.
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Fig. 7. Walking gait control table for the 16 module quadruped. Each module contains this information and and at runtime selects the appropriate
column according to its local position within the overall structure.

A zero element in the table corresponds to a module being
straight. Once a module knows where it is in the configuration,
it uses one column of this table to perform the gait. Should the
modules be reconfigured, they would use a different column
corresponding to their new position in the configuration.

3.2. Experiments

We implemented the algorithm on the 7 module caterpillar
and 16 module quadruped, shown in Figs. 3 and 4. The
opposing IR broadcasting boards allowed approximately a
two-square-foot range in which the caterpillar could crawland
the quadruped could walk around. We implemented a Zigbee
wireless unit to show the status of the modules and monitor
the CAN data.

With a hand-held joystick controller, we mapped gait com-
mands to the IR broadcasting boards, which the modules used
to decide upon actions. Videos of this work in action can be
found online at the ModLab webpage [25].

As expected, the robots were sensitive to orientation with
respect to the broadcasting boards. For instance, the caterpillar
and quadruped received the signals when parallel to the IR
broadcasting boards, with an approximately 15-degree margin
of deviation. The turning command was therefore quite useful
for the quadruped configuration, as it allowed the robot to stay
within the orientation where it could receive the IR commands.
Also, when modules in configurations moved beyond a few
inches beyond the illuminated area, they stopped reporting
signals, as expected.

The IR receivers reported incorrect IR messages 10 per-
cent of the time, on average. The frequency of incorrect
observations is function of proximity to the boards, and the
particular type of data sent. For instance, 0b11111111 is
confused less often than 0b00001111 (which may be confused
with 0b00011111 or 0b00000111, if the microprocessor makes
a bandwidth miscalculation).

We have constructed a hand held beacon that sends com-
mands which we intend to introduce as “jammers” to inten-
tionally confuse the robots. Experiments on this jamming are
now in progress and will be included in future work.

4. ALGORITHM DESIGN CONSIDERATIONS

An observer of this work may wonder why a majority
decision approach is chosen to demonstrate fault tolerance.
An alternative would be for a module that fails to receive an
IR message to ask its neighbors what they saw. However, this
approach does not work in larger systems where communica-
tion lines (IR or wireless, if chosen) may be out of scope in
patches. That is, if one module in a section within a system
asks its neighbors what they saw, the neighbors themselves
have not seen any message. It is possible for this message
querying to propagate until a module reports an IR message,
but then, what if this data is incorrect due to a noisy receiver?
In short, we believe our approach to be more general than fault
handling through local messaging. With majority certainty,
within the entire system, each module makes its decision with
high confidence and simplicity.

Also, the line-of-sight requirement for this IR system is
specific to demonstrate the algorithm developed. Collective
decision-making is, of course, not limited to IR systems.
One can readily incorporate the same approach for wireless
broadcasting and smart camera systems that are similiarly
well-suited for the communication fault tolerance and have
been implemented in other works on CKBot.

A benefit of this distributed algorithm is that both com-
putation and number of messages scales with the number of
modules in a configuration. Though each modules sends a
few messages per decision reached, the number of messages
increases only with the number of modules for larger systems.
Therefore, we believe this method is quite suitable for large
systems.

A cyclic redudancy check (CRC) is a common method to
help robustness in communications. It is a method that detects
errors in transmission; however, in the case where there is no
acknowledgement (as the quadraped control example), there
is no means to ask for a resend. Our method acts as an error
correction in addition to error detection.

Generalizing this algorithm to modular systems with no IDs
is possible if message signatures are assigned. For instance, if
modules with no IDs are used to find a majority over a wireless
network, the modules might add distinguishing signatures on
messages, such as “Leg module,” “Foot module,” and so on.



Quantifying levels of robustness poses interesting questions.
How robust should a system be? What is an optimal level
of fault tolerance for a modular robotic system? The percent
majority determines the threshold of a system’s fault tolerance;
choosing this value most likely depends on the tasks and
environmental conditions on hand.

In the limiting case where all modules in a configuration
are required to see the same signal and 100% agreement is
required, there is no effective fault tolerance and the system
is as delicate as a centralized controller. Just one faulty
IR receiver and the system is paralyzed. However, 100%
agreement greatly boosts confidence if a decision of action
is fact reached.

In some cases, only one module in a system needs to see
a signal, and this may be sufficient. In this other limitng
case, there is again no effective fault tolerance, as the system
may have numerous conflicting votes from modules and the
system is at a loss to determine which one to choose. However,
the system has the added advantage that only one module is
required to work, which is superior to the requirement that one
designated module that must work or else the whole system
fails.

So clearly the limiting cases of one or all for majority
decisions are not useful for fault tolerance. One interesting
majority is the at least 2/3 majority, which guarantees Byzan-
tine fault tolerance [26]. This scenario gives a deeper level
of fault tolerance in that the network messages are checked
to determine if a subset of modules is intentionally sending
confusing data. For example, in a Byzantine system applied to
our experiment, all modules would iteratively ask one another
what they heard from all the others. If less than one third of
the modules contained viruses and were programmed to lie
about their IR observations, the non-virus-infected modules
would still be able to determine what the original broadcasted
message was and choose the correct course of action. In this
way, the system would still determine a majority, even in the
presence of erroneous shared messages. This approach is quite
interesting; however, it is quite computationally and bandwidth
intensive as the number of inter-module messages scales as
factorial with respect to the number of modules the system.
There are, however, practical methods to improve this scaling
which may be worth pursuing for modular robotic systems
[27].

We are in the process of determining a quantitative measure
of confidence in a majority decision. A naı̈ve measure of
confidence in a collective decision is simplyC = M/T , where
C is confidence in the majority decision,M is the number of
modules in the majority, andT is the total number of modules
in the system. However, considering the votes of the modules
not in the majority may offer information about the confidence
in the system’s decisions. As an example, a3/5 majority with
the two dissenting modules giving different votes intuitively
suggests a higher level of confidence than a3/5 majority with
the two dissenting modules giving identical votes. Confidence
would be even lower if the two dissenting votes had binary data
similar to those for the majority which could be misinterpreted

in the signal processing (e.g., 0b00000001 compared with
0b00000011).

5. CONCLUSION

We have presented a model for modular robotic fault toler-
ance and demonstrated it on the CKBot system for caterpillar
and quadruped configurations. In this approach, we allowed
modules to share observations so that they could all vote
on actions to take corresponding to the globally broadcasted
IR signals. This allows fully functional modules to override
erroneous observations of the individuals to select robust
actions, tolerant to chronic and intermittent errors in data.
We also discuss issues regarding the majority function of the
algorithm, and, in particular, rule out the limiting cases of
one and all as being effectively fault intolerant systems. We
believe this area to be rich with investigations for future work,
including quantifying confidence in collective decisions,incor-
porating simultaneous distinct signals to allow the possibility
of multiple decisions, and making the algorithm isomorphic
to structural rearrangements.

System consensus will be further tested and developed in
future work that will involve multiple-beacon interactions with
modular configurations. We intend to introduce hand held IR
broadcasters, forcing the modular robot to make decisions
in slightly more complex environments where coordinated,
robust control is harder to attain. This approach would handle
intentionally differing messages, generalizing the algorithm to
take into account more decision-making scenarios.
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