
Proceedings of ASME 2008 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2008
August 3-6, 2008, Brooklyn, New York, USA

DETC2008-49535

STOCHASTIC CONTROL FOR SELF-ASSEMBLY OF XBOTS

Nora Ayanian∗, Paul J. White, Ádám Hálász∗, Mark Yim, Vijay Kumar∗

General Robotics, Automation, Sensing, and Perception (GRASP) Lab
University of Pennsylvania

Philadelphia, Pennsylvania 19104
Email: {nayanian, whitepj, halasz, yim, kumar}@grasp.upenn.edu

ABSTRACT
We propose a stochastic, decentralized algorithm for the

self-assembly of a group of modular robots into a geometric
shape. The method is inspired by chemical kinetics simulations,
particularly, the Gillespie algorithm [1, 2] that is widely used in
biochemistry, and is specifically designed for modules with dy-
namic constraints, such as the XBot [3].

The most important feature of our algorithm is that all mod-
ules are identical and all decision making is local. Individual
modules decide how to move based only on information available
to them and their neighbors and the geometric, kinematic and
dynamic constraints. Each module knows the details of the goal
configuration, keeps track of its own location, and communicates
position information locally with adjacent modules only when
modules in their vicinity have reconfigured. We show that this
stochastic method leads to trajectories with convergence compa-
rable to those obtained from a brute-force exploration of the state
space. However, the computational power (speed and memory)
requirements are independent of the number of modules, while
the brute-force approach scales quadratically with the number
of modules.

We present the schematic of the modules, preliminary ex-
perimental results to illustrate the basic moves, and simulation
results to demonstrate the efficacy of the algorithm.

∗We gratefully acknowledge the support from ARO Grant W911NF-05-1-
0219 and ONR Grant N00014-07-1-0829. N. Ayanian is supported by a NSF
Graduate Research Fellowship. Á. Hálász is supported by the Penn Genome
Frontiers Institute. Address all correspondence to N. Ayanian.

INTRODUCTION

The appeal of modular robotics is the potential to build ar-
bitrary objects out of a pile of tiny modules which can reconfig-
ure based on some minimal user input. Smaller modules corre-
late directly to increased versatility and portability of the system.
However, smaller modules increase the number required to form
a desired shape. As the number of modules increases, the motion
planning search space grows exponentially.

Indeed it is generally very difficult to generate determinis-
tic motion plans for reconfigurations in modular robots except
for small numbers of modules. For a large number of modules,
the number of configurations grows exponentially [4], and mo-
tion planning can quickly become intractable. An alternative to
deterministic motion planning is an approach in which all mod-
ules are equipped with pre-defined stochastic policies for decen-
tralized reconfiguration decision making. The energy to cause
a module to reconfigure can be internal (e.g. servos, motors)
or external (e.g. environmental oscillations). In this paper, we
discuss a Modular Self-Reconfigurable (MSR) platform which
is externally actuated by environmental oscillations, eliminating
the typical limitations of modules actuated by internal motors:
larger module size, power consumption, complexity, and cost.

Each module uses a set of constraints, knowledge of the
goal shape, and the location of modules in its vicinity to deter-
mine possible reconfigurations and an associated reward. This
stochastic policy is derived from the Gillespie algorithm, which
is used to simulate chemical reaction kinetics.

1 Copyright c© 2008 by ASME

Background
Several groups have demonstrated various algorithms to

solve the reconfiguration sequence planning problem ranging
from decentralized controllers to global planners, including
chain reconfiguration and lattice reconfiguration systems. Mu-
rata et al in [5] demonstrated a distributed controller based on the
diffusion of state information and module-level global configu-
ration estimation in their Fractum simulation. In [6], Shen et al
demonstrate a hormone-based distributed controller as a method
for diffusing information to a system of CONRO modules. Yim
et al [7] present a “goal-ordering” based distributed controller
for Proteo, a general class of 3D Modular Self-Reconfigurable
(MSR) modules. In [8], Rus et al present a centralized controller
for the Crystalline system. And in [9], Kotay and Rus present a
general trajectory planner for the Molecule system and introduce
a scaffold planning method that can increase reconfiguration effi-
ciency. Stoy et al [10] present a distributed method where certain
seed modules use local communication to establish a recruitment
gradient to guide reconfiguration. Pamecha et al [11] implement
reconfiguration planner using simulated annealing and a novel
metric. In the field of stochastic modular robotics, self-assembly
and self-reconfiguration have been controlled by module label-
ing and task specification [12] and by the use of graph gram-
mars [13].

There are examples in nature of self-assembly of entities
with virtually no processing power or sensing capabilities into
highly complex aggregates through simple stochastic rules. Ex-
amples span many length and time scales, from the synthesis
and self-assembly of complicated molecular machines in cells,
to sophisticated group behavior of social insects. There has been
significant effort to transplant these ideas to engineering, rang-
ing in application from materials, to systems biology, to MEMS,
and robotics. The stochastic nature of these phenomena can
be emulated using Markov chain Monte Carlo (MCMC) Algo-
rithms [14], which are widespread in engineering. The Gillespie
algorithm [1, 2], which emulates the inelastic collisions of indi-
vidual molecules with the use of Poisson processes, is widely
used in chemical applications. Based on the study of the behav-
ior of social insects, a framework was derived for the design of
stochastic controllers for swarms of robots, where a version of
the Gillespie algorithm is used to describe the swarm [15, 16].

Our method builds on this previous work but differs in two
crucial ways. First, we develop a motion planning algorithm for
underactuated modules with geometric, kinematic, and dynamic
constraints, such as the XBots which we describe in detail be-
low. Second, the proposed algorithm is decentralized, and the
computational cost is independent of the number of modules.

The outline of the paper is as follows. We first introduce
an example of a MSR platform, the XBot. We then describe
the stochastic controller, and present results of simulations, We
conclude with a discussion and directions of future work.

THE XBot PLATFORM
The concept of external actuation [3] to drive a MSR robotic

system is motivated by a significant challenge in the field of
modular robotics: to increase the number and decrease the size
of modules. Several groups [7, 17, 18], have demonstrated lat-
tice structured MSR systems at the centimeter scale. Poten-
tial applications for smaller modules include higher resolution
telepario [19], the 3D representation of objects, and operation in
small workspaces.

The extent to which a module’s size can be reduced is lim-
ited by the mechanisms, power, and processors that a module
requires to function. A typical MSR module has two types of
actuation mechanisms: a bonding mechanism to make and break
bonds with neighboring modules and a reconfiguration mecha-
nism to traverse the robotic structure or relocate the neighboring
modules. Generally, reconfiguration mechanism can consume
more than half the modules size, weight and power consumption
because of the large amount of energy required to reconfigure
the module. In addition, they greatly add to a module’s cost and
complexity.

Using external actuation can relieve the requirement for a
bulky reconfiguration mechanism. Rather than enabling modules
to reconfigure themselves under their own power, the energy for
reconfiguration comes from the system. Without the need for an
internal motor or servo for reconfiguration, a module’s design
and manufacturing can be greatly simplified. In addition, a mod-
ule’s size is no longer constrained by the need for an internal
reconfiguration mechanism.

XBot modules bond to one another to form a planar config-
uration. One module is fixed to the table (shown in Fig. 1) and
the other modules form the robotic structure around that fixed
module. Each of the four legs of the XBot has a pair of nickel
coated neodymium magnets used for bonding and serial com-
munication. Using the magnets, a module bonds to another at
the end of two of its legs. To reconfigure, a module uses shape
memory alloy wires to actuate a compliant bonding mechanism
that breaks the magnetic bond at the end of one leg. This al-
lows the module to pivot 180 degrees about the other magnetic
bond. The energy that causes the reconfiguration comes from the
oscillations of the table. The table is mounted to an XY stage
that can move the table in an arbitrary motion profile. As the
table (and the fixed module) cycles through a carefully-defined
motion profile, the inertial forces on the reconfiguring module
cause it to rotate into its new position. Each motion cycle is suf-
ficient to deterministically cause all types of reconfigurations. In
our case, these motions are either clockwise or counterclockwise
rotations, involving either a single module or meta-modules (a
subassembly of modules).

Module reconfiguration is subject to parity, geometric, and
connectivity constraints. Each module in an XBot system occu-
pies one of a discrete set of lattice positions. As shown in Fig. 2,
the magnetic polarity and serial function (transmit or receive)

2 Copyright c© 2008 by ASME

Figure 1: Three XBot modules on the XY stage table. The mo-
tion of the table provides the energy for reconfiguration.

Figure 2: An XBot module. The tops of the module’s four legs
are labeled indicating the alternation in magnet polarity and se-
rial function. Each leg has either north polarity and receives (RX)
or south polarity and transmits (TX). Magnets at the bottom of
the leg provide common ground and have polarity opposite to the
top magnet.

form an alternating pattern from one leg to the next. Because
of this alternating pattern, the grid positions of the configuration
space alternate in color, similar to a chess or checker board (see
Fig. 3, for two example configurations). When a module recon-
figures, it must rotate 180 degrees about its neighbor to a posi-

1 1

11

1 1

11

1 1

11

1 1

11

1111

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00 00 00 00

00 00 00 00

00 00 00 00

1 1

11

1 1

11

1

1

11

1

1

11

1

1 1

1

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0 0

0

0

00 00 00 00

00 00 00 00

00 00 00 00

0 0

1 2

32

2 1

23

0

1

01

1

0

10

0

0 0

0

-1

-2

-1

-3

-1

-2

-3

-2

-4

-1 -2

-1

-3

-1

-1 -3

-2

-4

-4-5 -2-3 -3-2 -5-4

-5-6 -3-4 -4-3 -6-5

-6-7 -4-5 -5-4 -7-6

-1 -2

Figure 3: A top view of initial (left) and final (center, right) robot
configurations, and two candidate potential maps.

Figure 4: A top view of two module reconfigurations. Top: A
single module reconfiguration. Bottom: A meta-module recon-
figuration.

tion of the same color as its initial position. Figure 4 shows two
examples of reconfiguration: the top panel shows a single mod-
ule rotating 180 degrees to its next location and the bottom panel
shows reconfiguration of a meta-module, a pair of modules work-
ing cooperatively, which we will discuss further in the following
section. Thus, this parity is maintained throughout the reconfig-
uration sequence. We discuss in depth the geometric constraints
as well as the connectivity constraints in the following section.

METHODS
We consider a population of N modules M = {mk|k =

1, . . . ,n}moving in a discrete state space represented by a matrix
with entries 0 (empty) or 1 (occupied). Starting from an initial
configuration, the modules must reconfigure to a final configura-
tion while maintaining connectivity and obeying all constraints.
Figure 3 shows a sample initial configuration (left) and a sample
final configuration (center).

Design of the reconfiguration algorithm
Our method can be viewed as a Markov chain Monte Carlo

(MCMC) algorithm. The system undergoes a random walk
through the space of all possible configurations. As in all MCMC
algorithms, the central design issue is the choice of probability
distributions from which to sample. The goal is to construct a

3 Copyright c© 2008 by ASME

List all possible
reconfigurations

Calculate time tk for
each reconfiguration

Identify smallest tk.
Choose this

reconfiguration.

Execute

reconfiguration

Update reconfiguration
list in local area

Recalculate transition
times

List all possible
reconfigurations

Calculate time tk for
each reconfiguration

Identify smallest tk.
Choose this

reconfiguration.

Wait

Did any module
transition while t<tk?

Does it change
local conditions?

Yes

Reconfigure

No

No

List all possible
reconfigurations

Choose reconfiguration

Identify smallest tk

Wait

Did any module
transition while t<tk?

Yes

Reconfigure

No

Calculate tk

Figure 5: Flow charts for the centralized algorithm (left) and two
implementations of the decentralized algorithm (center, right).
All three are mathematically equivalent.

Markov chain for the system that has the desired configuration
as its equilibrium distribution. The probability distribution func-
tion is based on a global potential, derived from a local potential
map by summation over all modules. The potential map is cho-
sen to maximize global potential at the desired configuration.

To decentralize the MCMC algorithm, we require the distri-
bution to be a Poisson distribution and the process to be a homo-
geneous Poisson process. Very briefly, we want a stochastic pro-
cess in which the random reconfiguration events are completely
independent, and the average number of reconfiguration events
per unit time is a (pre-determined) constant. By requiring each
module to have a stochastic decision making process that is a
Poisson process, we are guaranteed that the entire system also
emulates a Poisson process. This idea is used in the Gillespie
algorithm to simulate chemical reactions in well-mixed environ-
ments when the number of molecules is small and the continuum
models are not applicable.

The Poisson process is characterized by a rate parameter λ

and firing times between one to another that are exponentially
distributed with the expected time being given by exp(−λt).
When there are multiple modules and multiple states, a proposed
transition time is generated for each transition from a Poisson
distribution using the different rate parameters. The transition
with the earliest proposed time is executed; the proposed times
for the transitions which are impacted by this reconfiguration are
recalculated, and again, the next earliest transition is executed.

The above prescription can be used either as a system-level
specification, where all possible transitions of all modules com-
pete against each other, or on the module-level, where mod-
ules generate and follow their own proposed transition and time,
and recalculate them only if the local configuration changes.
The centralized and decentralized implementations, illustrated in
Fig. 5 are mathematically equivalent.

The use of competing transition times derived from Poisson
processes enables decentralization. In a centralized simulation,

the individual generation of Poisson times for each transition can
be replaced by the generation of a single transition time. The
choice of the transition can be made using any stochastic method
which ensures that the likelihood of choosing a particular transi-
tion is proportional to its propensity. If, in a simulation, one is
interested only in the sequence of steps, the generation of transi-
tion times is optional, and the algorithm is a simple MCMC. Sim-
ilarly, for real-world implementation, the process of generating
individual transition times has to be insulated from the physical
time it takes to transition. This is a practical issue which, simi-
larly to the question of connectivity, can be addressed by simple,
inexpensive means, which would introduce an element of collec-
tive communication but would not compromise the advantages
of the decentralized method.

The decentralized algorithm
The design of a decentralized algorithm is quite simple. Af-

ter each reconfiguration which directly affects a module’s list
of permissible reconfigurations, a module mk calculates its set
of permissible reconfigurations according to the reconfiguration
and connectivity rules. The module then calculates the potential
difference for each permissible reconfiguration, i → j, from the
potential map, ∆

i→ j
k = V (j)−V (i) for each reconfiguration, and

assigns each a propensity, pi→ j
k , given by

pi→ j
k = exp(α∆

i→ j
k), (1)

where α is a scaling factor which modulates the likelihood that
potential-lowering reconfigurations will occur. Each module
then determines a probability distribution for the reconfigura-
tions on [0,1], generates a uniform random number, and chooses
the corresponding reconfiguration.

Next, each module generates a Poisson random number tk
with expected value

τk =
1
λk

=

(
∑

j
pi→ j

k

)−1

. (2)

and waits tk time units. If no other module has reconfigured,
it communicates its position change to other modules, reconfig-
ures, then repeats the cycle. If another module has reconfig-
ured, it must determine whether the list of possible transitions
has changed. If it has not, then it transitions. If it has, then it
must update the list, and choose a new time tk.

Although each module runs an independent Poisson process,
the resulting behavior of the entire system obeys a Poisson pro-
cess due to its properties. Multiple concurrent Poisson processes
with intensities λ1, ...λN are equivalent to a single Poisson pro-
cess with intensity ∑

N
i=1 λi [20] allowing for our decentralization.

4 Copyright c© 2008 by ASME

The strong Markov property ensures that if the origin is moved
to a random point t1, then the points of the Poisson process to the
right of t1 form a Poisson process independent of t1 [20]. This
ensures that reconfiguration times need not be recalculated un-
less conditions for that module’s reconfigurations have changed
(due to local reconfigurations).

Reconfiguration Rules
Reconfigurations can only occur if there exists a collision-

free path to the next configuration; this is determined using ge-
ometric rules for the reconfiguration. Each reconfiguration can
involve a single module or two modules acting together as a
meta-module. The use of meta-modules is an established tech-
nique [21,22] used to simplify the motion planning problem and
expand the reachable space of configurations for a MSR system.
Without the addition of the two meta-module primitives (defined
below), the reachable space for a given XBot configuration is
severely confined. Note that the need for a meta-module is sug-
gested by the inherent parity of the system: a module always
needs an opposite colored neighbor module to reconfigure about.

In single module reconfigurations, the moving module must
ensure that the goal position is empty, and that there exists a
collision-free path to that position. In meta-module reconfig-
urations, one module serves as the leader, and the other a fol-
lower. The leader ensures the goal locations are empty and the
existence of a collision-free path, and instructs the follower to
release the proper inter-module bonds. It is not important which
module is the leader, as long as it is a consistent rule for that re-
configuration primitive Both modules in the meta-module do not
necessarily reconfigure to a new position. For example, in the
meta-module reconfiguration in Fig. 4, the upper right module
facilitates the reconfiguration of the center module. This is an
example of how the use of meta-modules expands the reachable
configuration space and simplifies planning. Without this primi-
tive, the center module would be stuck between the right module
and the left module.

Figure 6 shows the geometric constraints for 6 motion prim-
itives considered in our model. The panels, from left to right,
show (1) single module, (2) rigid pendulum meta-module, and
(3-6) double pendulum meta-module reconfigurations. Modules
depicted “m” act in a meta-module to facilitate reconfiguration
of the other module. Modules without “m”s which inhabit white
boxes can reconfigure to the blue boxes (or vice versa) if the
black boxes are occupied and the grey boxes are empty.

Maintaining Connectivity
Each reconfiguration must maintain the connectivity of the

system both during and after the reconfiguration. Connectivity is
determined on the connectivity graph.

The connectivity graph on the set of modules is the pair
of sets G = (M,E), where E ⊆ 4[M] is the set of edges on the

mm m

Figure 6: Geometric constraints for 6 possible reconfigurations.
Modules depicted “m” act in a meta-module but ultimately do
not reposition.

graph. Pairs of modules for which (mi,m j) ∈ E are called adja-
cent. Each module can be adjacent to a maximum of 4 modules,
with which it shares a side.

To ensure the connectivity graph stays connected, the mod-
ules mk which are adjacent to the reconfiguring module m∗ must
be connected to a fixed module if m∗ disconnected. This is typi-
cally a centralized calculation, where a leader keeps track of the
locations of all modules and determines whether reconfigurations
are admissible. In our decentralized approach, each module ad-
jacent to the reconfiguring module(s) sends a signal to the fixed
module without using the edges in E which contain module m∗.
If that signal can return to the adjacent module, then the recon-
figuration maintains connectivity.

To determine which reconfigurations are permissible, it is
not necessary for modules to know the state of the entire system,
but each module must know the location of other modules in its
vicinity. In small systems, modules can keep track of the entire
system since it may not be costly. Prior to any reconfigurations
modules exchange information about their locations so that each
module has a global map. Then, the module m∗ sends a signal
that it is moving from its current location i to a new location j,
along with the current and new location for any follower mod-
ule. Each module then updates its record of the global state. In
large systems, it would be costly for each module to maintain
global state information. In this case modules exchange infor-
mation locally with those in their vicinity, and update the local
state information if there are any changes nearby.

Potential Map
The only requirement for the potential map is that the po-

tential must have a unique maximum at the goal configuration.
The simplest example of a valid potential map is the center panel
in Fig. 3; however, because the potentials for locations outside
the goal configuration are equal, there is no reward for moving
toward the goal configuration (except on the boundary). A bet-
ter potential map is the one shown in the right panel of Fig. 3,
which rewards moves toward the goal configuration and penal-
izes moves away from the goal configuration. Although there is
no recipe for calculating the potential map, for convex shapes,
a heuristic would be to assign zero potential to locations on the
outer boundary of the goal shape. Each step into the desired

5 Copyright c© 2008 by ASME

Table 1: Statistical analysis of 1000 trials with 20 modules

Convergence Point Mean Std Dev Optimal

Two Defects 14.27 7.35 7

Total, no failures 133.1 169.3 17

Total with failures 207.63 486 17

shape would increase potential, and each step out of the shape
would decrease the potential (right panel, Fig. 3). One can mod-
ify the potential map to speed and/or increase convergence based
on observed convergence patterns, which we discuss in more de-
tail in the next section.

RESULTS
In this section we discuss the results of simulations which

illustrate the benefits and drawbacks of the method. The simu-
lations run on MATLAB. There are two main issues to focus on.
First, we are interested in determining if the desired goal configu-
ration is reached or not. Second, we are interested in convergence
rates. It is also worth pointing out that for large numbers of mod-
ules, it may be acceptable to reach a configuration that is “close”
to the goal configuration. Holes or defects in the assembly may
be acceptable. Therefore, we are also interested in convergence
rates to configurations that are close to the goal configuration.

Statistical Analysis on Small Groups
To compare our stochastic method with a deterministic

method, 1000 simulations were done to statistically determine
convergence rates. These simulations were done using the initial
configuration in the left panel of Fig. 3 and the final configu-
rations and the potential map of the right panel of Fig. 3. For
comparison, we used a breadth-first search (BFS) to determine
the shortest path to the goal (shortest means least number of re-
configurations, with meta-module reconfigurations counting as
one reconfiguration). The results of this study as well as the BFS
are shown in Table 1. The first row describes convergence to two
defects, the second row describes total convergence, ignoring the
26 trials which did not converge in under 3000 reconfigurations,
and the third row includes those trials which did not converge in
3000 reconfigurations, using 3000 reconfigurations as their to-
tal convergence. Before finding the optimal solution, the BFS
calculated 165,338 configurations in the state space.

To illustrate the convergence of the system in this study,
Fig. 7 shows the convergence pattern. Convergence to two de-
fects is rapid, then convergence slows while modules search for
a hole to fill and other modules in goal positions exit and re-enter.

Number of Reconfigurations

0 20 40 60 80 100 120 140
0

1

2

3

4

5

N
u

m
b

e
r

o
f

D
e

fe
c
ts

Number of reconfigurations

M
e

a
n

 N
u

m
b

e
r

o
f

D
e

fe
c
ts

0 50 100 150 200 250 300
0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

Number of reconfigurations to converge to two defects

N
u
m

b
e
r

o
f
tr

ia
ls

 w
h
ic

h
 c

o
n

v
e
rg

e
 p

e
r

ra
n
g
e

0 500 1000 1500 2000 25000

50

100

150

200

250

300

350

Number of reconfigurations to total convergence

N
u
m

b
e
r

o
f
tr

ia
ls

 w
h
ic

h
 c

o
n

v
e
rg

e
 p

e
r

ra
n
g
e

Note: This figure does not include

those trials which did not converge

in 3000 reconfigurations.

Figure 7: Results from 1000 trials with 20 modules. Top Left: A
typical run showing convergence to the goal configuration in 121
steps. Top Right: Averaged results over the 1000 trials showing
the mean convergence rate. Bottom: A histogram of time taken
to reach configurations with only two defects (left) and the time
taken to reach the goal configuration (right).

Larger Groups of Modules
With larger groups of modules, calculating an optimal path

to the goal via BFS becomes prohibitively complex. Here our
method has a significant advantage over deterministic methods.
For the smaller group, the BFS took longer than a day to com-
pute, and the state space scales quadratically with the number of
robots. Even in the small case, running the stochastic algorithm
takes much less time as well as much less computing power.

Steps Toward Optimizing the Potential Map
Although the heuristic suggested previously may result in to-

tal convergence, it may be desirable to modify the potential map
to speed the convergence process. Using observations of a few
runs as a guide, one can note patterns which end in total conver-
gence and those which do not. With this knowledge, a potential
map can be designed to speed total convergence, convergence to
a number of defects, or to make pathological cases less frequent.

Pathological Cases. Figure 8 shows pathological cases
for groups of 42 and 72 modules. These pathological cases can
be made less likely by modifying the potential function based
on behaviors observed in a few test runs. For example, to in-
crease the probability that a hole will be filled, either (1) increase

6 Copyright c© 2008 by ASME

Figure 8: Pathological cases with 42 and 72 modules.

potential value of that location, (2) decrease potential difference
between goal locations that block the hole and non-goal locations
which would unblock the hole, or (3) increase potential differ-
ence for pairs of locations along a typical observed path to that
hole location.

It is important to note that in some applications, it may not
be critical to have all holes in the interior of the shape be filled.
As the number of modules increases and as the size of modules
decreases, holes in the interior become less critical.

CONCLUDING REMARKS
We presented a decentralized method for stochastically con-

trolling modular robots to self-assemble into desired shapes. Our
algorithm takes into account the geometric, kinematic, and dy-
namic constraints that are realized in the XBot platform. The al-
gorithm is a MCMC algorithm in which the desired distribution
function is based on a global potential which is maximized at
the desired configuration. The decision making process at each
module is a Poisson process, and minimal communication be-
tween modules is necessary.

It is true that a pre-computed deterministic (not necessar-
ily optimal) plan would likely execute in a shorter time with a
smaller number of reconfigurations; however, this stochastic ap-
proach shows promise as a very low-computation solution. A
BFS for a 20-module calculation took longer than a day to com-
pute on a 2 GHz Intel 64-bit processor running Unix and MAT-
LAB, and explored 165,338 configurations before finding an op-
timal solution. Our decentralized method typically generates re-
sults much faster, although the solution can be far from optimal.
The key benefit is that the processing power and memory require-
ments for each module are independent of the number of modules
and the desired shape.

One limitation of this algorithm is that total convergence is
not guaranteed; however, we have discussed a few ways in which
convergence may be increased via the potential map. In the fu-
ture, we would like to explore the possibility of developing deter-
ministic rules for designing potential maps, eliminating guessing
and trial-and-error for non-star-shaped and topologically convex
sets. Another limitation of this method is that the last few mod-
ules take the longest to converge. One possible way to address
this issue is to switch this stochastic controller with another, per-

haps more complex, decentralized controller once almost-total
convergence was achieved. Even though the controller would be
more complex, it would not be as difficult to plan for the hand-
ful of wandering modules when almost all modules had reached
a goal position. These are directions for ongoing research, as is
experimentation with the XBot platform.

REFERENCES
[1] Gillespie, D. T., 1976. “A general method for numerically

simulating the stochastic time evolution of coupled chem-
ical reactions”. Journal of Computational Physics, 22(4),
pp. 403–434.

[2] Gillespie, D. T., 1977. “Exact stochastic simulation of cou-
pled chemical reactions”. The Journal of Physical Chem-
istry, 81(25), pp. 2340–2361.

[3] White, P. J., and Yim, M., 2007. “Scalable modular self-
reconfigurable robots using external actuation”. In 2007
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 2773–2778.

[4] Chen, I.-M., 1994. “Theory and applications of modular
reconfigurable robotic systems”. PhD thesis, Division of
Engineering and Applied Science, California Institute of
Technology,, Pasadena, CA.

[5] Murata, S., Kurokawa, H., and Kokaji, S., 1994. “Self-
assembling machine”. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation.

[6] Shen, W.-M., Salemi, B., and Will, P., 2000. “Hormones
for self-reconfigurable robots”. In Intl. Conf. on Intelligent
Autonomous Systems (IAS-6), IOS Press, pp. 918–925.

[7] Yim, M., Zhang, Y., Lamping, J., and Mao, E., 2001.
“Distributed control for 3d metamorphosis”. Autonomous
Robots, 10(1), p. 41.

[8] Rus, D., and Vona, M., 1999. “Self-reconfiguration plan-
ning with compressible unit modules”. In Proceedings of
the IEEE Intl. Conference on Robotics and Automation,
Vol. 4, pp. 2513–2520.

[9] Kotay, K. D., and Rus, D. L., 2000. “Algorithms for
self-reconfiguring molecule motion planning”. In 2000
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Vol. vol.3, p. 2184.

[10] Stoy, K., and Nagpal, R., 2004. “Self-reconfiguration using
directed growth”. International Symposium on Distributed
Autonomous Robotic Systems, June 23-25.

[11] Pamecha, A., and Chirikjian, G., 1996. “Useful metric for
modular robot motion planning”. In Proceedings of the
IEEE International Conference on Robotics and Automa-
tion.

[12] White, P., Zykov, V., Bongard, J., and Lipson, H., 2005.
“Three dimensional stochastic reconfiguration of modular
robots”. In Robotics: Science and Systems, MIT.

[13] Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone,

7 Copyright c© 2008 by ASME

W., Napp, N., and Nguyen, T., 2005. “Self-organizing pro-
grammable parts”. In International Conference on Intelli-
gent Robots and Systems, IEEE/RSJ Robotics and Automa-
tion Society.

[14] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A.,
and Teller, E., 1953. “Equations of state calculations by fast
computing machines”. J. Chem Phys, 21, pp. 1087–1092.

[15] Berman, S., Halasz, A., Kumar, V., and Pratt, S., 2006. “Al-
gorithms for analysis and synthesis of a bio-inspired swarm
robotic system”. In Lecture Notes in Computer Science
4433: Swarm Robotics. Springerlink, pp. 56–70.

[16] Halasz, A., Hsieh, M. A., Berman, S., and Kumar, V., 2007.
“Dynamic redistribution of a swarm of robots among mul-
tiple sites”. In Proceedings of IEEE/RSJ International Con-
ference on Intelligent Robots and Systems.

[17] Rus, D., and Vona, M., 2001. “Crystalline robots: Self-
reconfiguration with compressible unit modules”. Au-
tonomous Robots, 10(1), 01/01, pp. 107–124.

[18] Unsal, C., and Khosla, P. K., 2000. “Mechatronic design of
a modular self-reconfiguring robotic system”. In Proceed-
ings of the IEEE International Conference on Robotics and
Automation, Vol. 2, pp. 1742–1747.

[19] Goldstein, S. C. ., Campbell, J. D., and Mowry, T. C., 2005.
“Programmable matter”. Computer, 38(6), 06, pp. 99–101.

[20] Kingman, J. F. C., 1993. Poisson Processes. Oxford Uni-
versity Press, New York.

[21] Vassilvitskii, S., Yim, M., and Suh, J., 2002. “A complete,
local and parallel reconfiguration algorithm for cube style

modular robots”. In Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 117–122.

[22] Christensen, D. J., Ostergaard, E. H., and Lund, H. H.,
2004. Metamodule control for the atron self-reconfigurable
robotic system.

8 Copyright c© 2008 by ASME

