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Abstract— Recognizing useful modular robot configurations characteristic is the module’s connectivity relationstap
composed of hundreds of modules is a significant challenge. other modules (e.g. location in a graph) and not an ID
Matching a new modular robot configuration to a library of number
known configurations is essential in identifying and applying S .
control schemes. We present three different algorithms to addrss * Self-re_palrw_lth many repeated modules can include the
the problem of (a) matching and (b) mapping new robot configu- reconfiguration of a system to move broken modules
rations onto a library of known configurations. The first method to non-critical locations in the configuration. Identifgin
solves the problem using graph isomorphisms and can identify isomorphic configurations can be one step.

configurations that share the same underlying graph structure, . . . .
but have different port connections amongst the modules. The N all three cases listed above, it would be more interesting

second approach compares graph spectra of configuration matr  to not only find the isomorphic configurations, but find the
ces to find a permutation matrix that maps a given configuration functionally similar configurations. For example, a 4-liecb
t‘; ":‘h‘éno‘r"c’)’g)l‘;rr‘ﬁ-fgrhfhzhirg%‘g&gtrh:gbeoﬁg'zgéhﬁ]Ug&?‘igsﬂ;‘i&“;ﬁ configuration with 10 modules in each limb is similar to
0 . . . . . .
achievg impressive gaiﬁs in performance and speed over existinga 4-I|mbed'conf|gurgtlpn with _9 quules_. F'_”?"”g the set
techniques, especially for larger configurations. With these three Of all functionally similar configurations is difficult as an
algorithms, this paper presents novel solutions to the problem understanding and breakdown of the function of possiblestas
of configuration recognition and sheds light on theoretical and would be required as well as reasoning about failure modes.
Fr:{ggﬂf:‘r' riggggisfoé:aosnu?;e;?dde\;amncfessigr;hisrémgggigtc%ﬁa;]; It is easier (but not easy) to find the set of all kinematically
the performance of the three aIgorith?ns and (ﬁscuss their reIaFt)ie similar, 0!' 'somorph',c Conﬁg,uratlons W,h'Ch V,VOUId b? a step
advantages. towards finding functionally similar configurations. Thssthe
main focus of this paper.
This work presents a comparison of three methods of

I. INTRODUCTION matching a new configuration to a set of known configurations

i@d mapping their physical labeled modules to their logical

A modular robotic system composed of reconfigurable units = "%
’ o J Rasition in a control scheme. The three methods are:

has been an active area of research for the past two deca
Various groups have created an array of different modelsl) an automorphism grouping method usimauty,

with diverse control schemes (master/slave, entirely [Joca 2) a spectral decomposition approach,

genetic algorithms) (Fukuda 1990, Murata 1998, Kotay 1998,3) a heuristic graph search called 3DLL.

Chirikjian 1994, Rus 1999, Murata 2000, Yim 2000, Castanan analysis of these approaches is given with insights into u
2000, Fitch 200@)nsal 2000, Jorgensen 2004, Shen 200€jerstanding the physical relationships between the sitifab
These systems are made with a number of repeated units #}&d execution times of the different approaches.

can be rearranged to form different configurations, each ofchen and Burdick (Chen 1996) published related work on
which can be used for different applications. For example,equmeration of non-isomorphic configurations and ideintiy
shake-like configuration may be good at going through smgihematically similar structures in this set. The work eneted
holes, while a monkey-like configuration may be better &fere is a departure from enumeration and instead focuses
climbing. As the number of modules increases, the numbg# algorithmic approaches to configuration recognition and
of possible configurations rapidly increases. mapping to configurations in a known database. A positive

Automatic configuration recognition is the process by whicthatch and mapping provides the network structure needed for

a modular system can determine its own configuration withoigbmorphic control.
having it explicitly programmed. This has a variety of uses castano and Will introduce the matching of a physical
including: arrangement of modules to a known configuratiorc@sfigu-

« Function follows formcan be implemented with prepro-ration discoveryCastano 2001 on CONRO. While they address
grammed behaviors that can be called up based on terdware and software processes for building a represamtat
configuration. For example, if modules are assembled inbd the configuration, they do not address the matching prob-
the shape of a dog, the system is controlled to behave lilen, instead referencing the graph automorphism aadty
a dog, if in the configuration of a snake, then behave likess a possible approach. CONRO uses unlabeled modules,
a snake etc. so mapping of labels is not required. Indeed, the unlabeled

« Rapid manual repairfor broken labeled modules, au-system is a subset of the problem in this paper. Arbitrary
tomatic configuration detection allows any module ttabeling can be applied to two unlabeled configurations and
replace any other without reprogramming. The importaghecked to see if they match. In addition, we present complet



implementation details for three different algorithmstead of the graph represent the modules while the eddges=
which has its own relative advantages. (e1,e9,...,€.)) Of the graph represent the connections be-
We include a new algorithm that exploits the specidlveen the modules. Here is the number of modules in
structure of our problem and is able to achieve impressitlee robot whilec is the number of connections between the
improvements in speed and performance for certain cases. Tiodules. The labels for the vertices are the unique node IDs
implementation of these algorithms and analysis of thelt®sucorresponding to each module. Further, a mapgipg £ —
achieved with them providesew insights into the problem E is used to assign a particular edge type to each edge. The
and the feasiblity of employing the different techniques wedge type represents the type of connection between the two
present here. modules (which is based on the ports that are connected to
This use of the special structure is also used by Butler'st aeach other). The graph representation can be converted to
goal recognition algorithm (Butler 2002). However, theisre a matrix representation using adjacency matrix {/). The
is designed for distributed systems and solves the matchiadjacency matrix for a graph with vertices andc edges
problem, whereas the methods presented here are cerdraligea n x n matrix with M;; = 1 implying that vertexv; is
systems (exploiting global knowledge) and solves both tlaljacent to vertex; and0 otherwise. A special version of the
matchingand mappingproblems. In fact, mapping solutionsadjacency matrix called thport-adjacency matrixs defined
may not be necessary in a distributed system. Distributad an x n matrix A where A4;; represents the port number
versions of the methods presented here are possible, dut tramodule: that modulej connects to. Instead of 1 as in an

is left for future work. adjacency matrix the element holds an integer from 0.to
A graph G is isomorphic to another graply, if the
A. Automatic configuration detection adjacency matrices for the graphs are related by a set of row

i . ) .and column permutations. ;5 is the isomorphism between
A configuration of a modular self-reconfigurable robot i e two graphs, thel/,(G1) = Ga. A graph may also

defiped as the arrangement (connectivity) of modules inggef isomorphic to itself, i.e. there exists an isomorphism

a single _connected component. _There are many ways Qleh thatAf,(G1) = M(G1). The set of graph automor-

representing this connectivity, but it is typically donettwa hisms is especially important to test against when tryng t
graph where the nodes of the graph are the modules and?

the . ) .
. identify modul nfigurations. The problem of modular
edges represent the connection between modules. dentify module configurations. The problem of modular robo
In a homogenous system, all modules are identical havi

.configuration recognition and mapping can now be formally
a number of connection ports with each pair of ports

O8fined as follows: Given a set of robot configurati@gis=
havingw multiple ways (e.g., orientations) of connecting. Thgl’ GZ’ -+, Gn and anew T“°d“'ar robot cgnflguratlm_ew,
. ) identify a robot configuratiorG; € G that is isomorphic to
number of different ways that modules can connect into one
connected component is very large approaching)™ since
each module added to a configuration can be added to anyc‘?fOrganization

¢(n—1) connection ports im different orientations. However, . . . .
| The paper is organized as follows. In Section Il, we intro-

many of these configurations are morphologically identic . .
(isomorphic). In addition, many modules have symmetri(?suce a modular robotic system which serves as a good example
system for connectivity analysis. Sections I, IV and Valiss

such that attaching a module results in functionally idedti . . . . .
He three implemented solutions with Section Ill serving to

morphologies though the control may need to be modifid _ . . .
(e.g., mirrored modules might need control to have an op@os'intmduce the problem in more detail. These implementation
were compared by testing on different sets of configurations

sense). . ) , :
) cluding a set of randomly generated configurations. These

Automatic configuration recognition has two functions, 1% q | h i h . d di d
identifying a configuration (for example checking to see Sts and resu ts are s own in €ac section and discusse
in Section VI. Some experimental results of an embedded

the configuration is isomorphic to one in a library of con licati | h i thi ion. Einally. Seckit
figurations) 2) mapping the labeled modules in the physicgpp ication are aiso shown In this section. Finally, Sec )
configuration with the logical arrangement of the knowﬁalks about the implications of these results and describes
configurations to which it is isomorphic. We call the firgfuture work.

part configuratiormatchingand the second part configuration Il. CKBOT

mapping

new-

While many of the current incarnations of modular robots
] are intended for self-reconfiguration, the work here agpice
B. Graph representation of modular robots both self-reconfigured and human reconfigured modules. In
Graphs are concise representations for modular robots dmih cases, the connection mechanisms, whether autonomous
readily allow application of techniques from graph thedky. or manual, define the possible set of configurations.
few principal tools derived from ideas in graph theory are A connector physically attaches two modules together and
employed in our methods of configuration recognition anaften connects power and/or communications as well. The
mapping. In this section, we introduce notation and defingi connectors may be gendered (male and female) or they may
related to work in later sections. be hermaphroditic (containing both male and female compo-
A modular robot configuration is often represented as rents). Gendered connectors connect only to the opposite ge
graph G = (V,E). The vertices ¥ = (vg,v1,...,v,)) der whereas hermaphroditic connectors can be homogeneous,
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Fig. 1. Surveyer Dodl7 modules in a 4-legged configuration Port 7

Fig. 2. One CKbot module with a schematic representation. Tinewa
all connectors are the same and can connect to each other.iffdates the rotational axis, the numbers are the port fitstton numbers

this paper we will consider only homogeneous hermaphioditissigned to each port
connectors.

A. CKbot Hardware

CKbot (Connector Kinetic roBot) is a new modular recon
figurable robot that is used as the experimental platforrhim t
work. The kinematics and connector strategy is typical fc
many chain style reconfigurable modular robots (Yim 200(
Castano 2000, Murata 2000). Figure 1 shows 17 modules
the configuration of a dog. Each module in the system consi
of:

1) A laser cut plastic (ABS) body with a hobby serva
actuator to control one rotational degree of freedom.
2) A controller (PIC18F2680) and associated hardwargy. 3. Two IR transmitter and receiver pairs are on each sidep the
for implementing a Controller Area Network (CAN)bottom port which has one pair.
communications protocol.

3) Four connector faces that pass the communications bus ) ] )
and power bus with an option of attaching @0° (presense or absence) of its neighbors. CKbot uses aneadfrar
rotations. If power and communications are ignored tfRmitter/detector-based local communications mechanism.
faces have rotational symmetry order 4. Figure 2 shows a CKbot module with four connection
. a{)orts and the 2D schematic representation of a module. Each
Two modules are attached together by using screws (4 pairs . )
. ort except the bottom port has two infra-red (IR) transmit-
of holes are available, 4 threaded, 4 non-threaded). An el¢C ; ; :
. S . ...._ter/receiver pairs. Figure 3 show the layout of the seven IR
trical header is included in between the modules to fatdita

L : . . airs. Note that when two faces are attached together, the
the communications and electrical power bus. With this hea(fransmitter LED (TX) faces directly on to the receiver pho-

the connection is homogeneous and hermaphroditic. Power Qi . :
) . odiode (RX) on the opposing face and vice versa. Currently,
be supplied either from an external power supply or on-boar, .
) . ) 40 CKbot modules have been constructed and a variety of
Li-poly batteries that plug into the power/data ports on thte . . S
asks have been demonstrated including moving like a snake,
module. . . rolling like a tread, digging in sand and walking like a sknk
The module can be considered as a cube with connectors on . ! . o .
: o y. Section VI-A also describes a demo combining multiple
top, bottom, left and right faces as in Figure 2. The top, Ie%?aits
and right faces are rigidly mounted together, the bottone fad®"™>
is actuated to rotate up t@0° to form the front or rear face
of a perfect cube. Functionally the module has one symmefy Low Level Software
where the module is rotatetB0° so left and right sides are The software used in CKbot builds upon the Robotics Bus
swapped, though the actuator would need to be controll@8omez-lbanez 2004). The Robotics Bus was designed to be
in an opposite sense to be equivalent. The top and bottamaptable to a variety of applications based on the Coatroll
connectors almost have the same symmetry, however the Jefea Network (CAN) bus communication protocol. One fea-
and right faces are rigidly attached to the top, sd83° ture of the Robotics Bus architecture is a broadtestrtbeat
rotation swapping top and bottom results in a kinematic geansignal of each module about once every second. This signal
(though not positional) in the left and right faces. contains a unigue identifier allowing other modules on the bu
The system has a global communications bus allowirig periodically identify the other modules present on the.bu
each module to talk to and discover which other modulégote that this necessitates the assignment of a unique node
are available. However, this bus does not indicate neighd@® number to each module. The Robotics Bus also promotes
connectivity. Local communication allows each module tk tabrowseability i.e., the ability of a central controller to query

to its neighbors which inherently indicates the connettivi and identify the important attributes of a module. This unlgs




the number and type of modules, important parameters like SL FL

gain and scaling factors that can be set externally, the tatsdu 0 { 0

current state and sensor data associated with the module. Fo 6

CKbot, the important information available on the bus ines

the joint angle sensor for the module. 1 2 3
The unique node ID on CKbot means that the modules are —

labeled. Modular systems may either be labeled or unlabeled 2 4 3

(Caastano 2000). For many control schemes, module labels = =

and configurations are coupled in a manner critical to the 3

control. E.g. the methods rely on mapping of physical moslule 0 1 2 3 4

to logical configuration dependent locations. In one such 4

method individual modules perform prescripted motions in

a gait control table(Yim 2001). These control methods are 5

applied only to specific configurations or configurationst tha 5

can be extended in a regular pattern (e.g., making a snake 6 TL

longer, or increasing the number of legs in a centipede.) 6

In most of these cases, the configuration of the robot and =
the position of each module in the robot is specified either
manually, or determined using a set of rules for a small clag$- 4- A database of known configurations.
of configurations.

Each CKbot module functions as an independent entity.
Distributed control is possible with CKbot, though for this
paper centralized control will be the focus as it is easier !

|mpI<re]ment and e.xplam.ll q CKb h ny contact with the transmitter is logged in a neighbor
When power is applied to a K Qt system, t € cgntr ble along with the node ID specified by the transmitter.
controller logsheartbeatsand additional information including 21 module stores information about its own neighbors. A
positional feedback values and neighbor imforr_nation c’_heagomplete neighbor map can be constructed by the central
module. The_centra! cor_1troller can use this mformatmn Qontroller by querying this information from the individua
output a desired gait. Since the robots are sometimes h dules

assembled, the same configuration can be formed by PUting, his section we looked at some of the conventions and

together disparate sets of modules. The central COmroIl‘rar{plementation details necessary to formulate the problem

must then recognize the manually assembled configuratidn ) configuration recognition and mapping. In the next three

output the correct set of gait values to different individu ection, we will present the three algorithms used to solve

modules. Thdneartbeatallows a central controller to recognizet :
" . is problem.
the addition of new modules or the removal (or failure) OP

modules in the robot while running.

Reir 7 ports at a rate 8 times faster than the transmitter.

IIl. | DENTIFYING GRAPH ISOMORPHISMS

Traditional techniques from graph theory form the basis
of the first approach to solving the configuration recognitio

Neighbor discovery is the process where each modigsplem. The process involves two steps, computing thehgrap
detects the presence or absence of neighboring modules @pghorphism that relates the two configurations and then
a representation of the connectivity of the whole system jgapping the two configurations onto each other. The first
generated. This was the central contribution in (Castai®d 20 problem is tackled by comparing @anonical representation
On CKbot, detection is done by the seven IR ports on eagl} the underlying graph structure (the graph nodes without
connection as shown in Figure 3. port information, i. e. the adjacency matrix, not the port

There are 11 possible ways that the top, left, or right porgjjaceny matrix) of the configurations. This pares the niagch
can be attached to another module and 7 possible ways for gigblem down to considering a fraction of configurations in
bottom port. Each module has 7 IR pairs to determine eachtfg Jibrary. The second problem is tackled by comparing the

these possibilities but one asynchronous serial commtioica complete automorphism group for the new configuration with
device (On the PIC, a USART) The USART is mUltiplexed t%e canonical representations in the |ibrary.

each IR port.

The neighbor detection procedure can be distributed in-(Cas
tano 2001) or centralized. For CKbot a centralized corgrollA- Example
is used. The controller designates each module (as digmbver Consider the set of known configurations in Figure 4. All
from heartbeats), one at a time as a transmitter and thesothibie configurations have 7 modules and include a snake-like
as receivers. The transmitter cycles through its 7 IR por(§L), a four-limb L) and a three-limb configurationT).
waiting for a certain time on each port and transmitting it§he goal is to match the new configuratibi. in Figure 5 to
node ID on that port. The receivers cycle through checkirape of the configurations in the database.

C. Neighbor Discovery Subroutine



NL

c particular robot configuratiomautyreturns the automorphism
group corresponding to the graph and a canonical representa
5 6 tion for the input graph. Two graphs are isomorphic if they
have the same canonical representation.

The canonical representations that are used here also rep-
4 3 resent only the connectivity of the underlying graphs corre
— sponding to the different configuration, but do not contain
2 0 1 any information about the port connections themselves. As

we shall see later in this section, the port connection are

essential in determining actual matches. However, théinit

Fig. 5. A new configuration. step of comparing canonical forms allows the search space
for determining complete matches to be significantly naeaw
down.

The adjacency matricefor the set of known configurations  The first step, as mentioned earlier, is to find the canonical
and the new configuration are generated by labeling thgpresentations of known configurations. 1%, denote the
vertices in increasing order of node IDs. Vertgxcorresponds canonical representation of a configurati®h
to the lowest node ID while vertex; corresponds to the  The canonical representations for these configurations are
highest node ID. The adjacency matrices for the set of k“OVt‘Bmputed usingrauty and the mappings from the canonical

configurations in the database are given by: representations to the configurations in the database wea gi
0 1 0 0 0 0 0] below.
10100 00
0101000 gSL:(0123456)—>(0634215)
Mg, =10 0 1 0 1 0 Of,
0001010 grr (001 2 3 45 6)—(0 1 4 5 6 3 2)
0000101
0 00 00 1 0] gr:(001 2 345 6 (135046 2
[0 0 01 0 0 0]
001 0O0O0TO0 The gait for the reference configuration is also
0100 1 01 mapped to the gait for the canonical configuration.
Mprp,=11 0 0 0 0 1 1 Given (¢o(t),...,¢i(t),...,¢,(t)) as the gait for the
001 0O0O0O0 reference configurationSL, the gait for the canonical
0001000 configuration ofSLis given by(6y(t),...,0:(t),...,0,(t)) =
00110 0 0 (Pgs0) -+ Pgsr (i) -+ Pgsrn)):
o q On examining the canonical configuratiofg, andNL have
0 100000 the same canonical representation given by:
0 01 00 0O '
01 01 0 10 0 0 0 0 0 1 0
Mrp=10 0 1 0 0 0 O 000000 1
000 1000 000000 1
00 100700 Mpy, =10 0 00 0 1 0
0 0 0 0 0 1 0f 00000 1 1
The adjacency matrix for the new configuration is given by: 100 1 1 00
[0 0 0 1 1 0 0] e
000 1000 It is easy to see that the new configuration is a four-limb
000 0100 configuration. In addition to the canonical representatian
Myp=11-1.00 00 1 mappingg from the vertices of the canonical configuratiel,.
(1) 8 (1) 8 (1) é 8 to the vertices (and thus node IDs)ME is also calculated by
0001000 the algorithm. Thus, this part of the solution gives two t&ssu

L e (a) a match betweeNL andFL,. and (b) a mapping from the

The graph isomorphism problem is approached usingnades ofNL and FL.. However, note from Figure 5 that the
software program callechauty (McKay 1981). nauty (no connections between nodes 0, 3 and 4 in configuralan
automorphisims,yes?), authored by Brendan McKay (andire different from the connections between nodes 4, 5 and 6
available electronically fromhttp://cs.anu.edu.au/ in configurationFL.. This necessiates an additional test for
~bdm/nauty/ ), is a software program that determines a sebmplete matching where the symmetries of the individual
of generators and size of the automorphism group of a grapmodules are taken into account, using tpert-adjacency
The input tonautyis theadjacency matrixcorresponding to a matrix.



Now considerEL. and JL. They have the same canon-
4 ical representations, but different port-adjacency roafi
However, with the left/right symmetries, they represerg th
6 5 same configuration. This can be seen on examining the
= automorphism grougdor JL. An automorphism denotes the
isomorphism of the graph to itself and in this cdsk. and
JL belong to the automorphism group for the underlying
JL graph structure. Thus, during comparison, two configunatio
must be compared against each other and against the whole
automorphism group for one of the configurations.
The last property we must consider in comparing the two
1 0 1 0 configurations is the symmetry of the modules themselves.
Again, this can be seen by comparikg. and JL. Modules
5 5 and 3 inJL map to modules 6 and 2 i&L.. However,
6 6 5 on matching the two configurations and aligning them with
o o respect to each other, all the modulesJafare rotatedl80°
2 | 3 9 3 such that the left and right ports are swapped. Thus, iniaddit
= — — to comparing the port adjacency matrices, we must also take
EL FL into account symmetries in the module itself. This is easily
c ¢ done by listing all the symmetries explicitly and comparing
against them when carrying out the port adjacency matrix
Fig. 6. Examining the automorphism group and the port-adjacematrix. comparison.

B. Automorphisms and the port-adjacency matrix C. Final mapping

In the previous section, the isomorphism of the underlying Using the techniques detailed in the previous sections,
graph structures was used to reduce the size of the searwh sp@& can now find the mapping from configurati¢iL. to
to be considered for the matching problem. However, theze ajonfigurationNL in our original example.
two additional issues in completely matching the new configu
ration to the reduced database of configurations. Condier, ¢g:(0 1 2 3 4 5 6)— (6 5 2 1 0 3 4)
example, the set of configurations in Figure 6. Hétk, and . . ) . )
FL, are two canonical representations for configurations in ty&"€x v in the canonical configuratioRL. maps tog(v) in
database whildlL is a new configuration we are looking tot"€ New configuratiomL. _ .
identify. The graphs for all three configurations have theesa 10 find the correct mapping for the gait to the new

configuration, align the two configurations using the graph

canonical representation, yet only one pair match. ) ; ; ’ His
Looking at the figures it is clear that andFL, are different isomorphism defined earlier and compute the direction of
the joint axis of each modulwith respect tothe joint axis

configurations. The difference lies in the nature of thechtta y i ’
ment between modules 3 and 5. Although this information f§ the module corresponding to vertex in the canonical
unavailable from just the adjacency matrices correspanttin configuration. Now, compare the direction of the joint axis f

these two configurations, it is available in the port-adjaye the vertexv; (with respect tovg) in the reference (database)
matrices corresponding to these two configurations: configuration to the direction of the joint axis for the verte

) i} v = g(v;) (with respect tog(vp)) in the new configuration.
000070 The direction can either be parallel or anti-parallel. 1&th
directions are parallel the#; in the gait maps td@; in the
new configuration. However, if the directions are anti-fata
thend; in the gait maps te-6; in the new configuration. The
desired goal of mapping the gait for the reference configu-
ration (61(¢) ... 6,(t)) onto the joint angles for the new
configuration has been achieved.

- Applying this procedure to NL, given the gait
(Oo(t),...,0;(t),...,0s(t)) for the canonical configuration
FL., the gait forNL is found to be by(¢o(¢),...,9s(t)) =
(—0a(t), —03(2), B2(t), 85 (1), B (1), 61 (1), Bo(2)).
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D. General algorithm

_ O OO0 oo Oo

0 - The above procedure is presented as a general algorithm in

It is easy to see that the two configurations differ in row 4. Algorithm 1.




Algorithm 1 nauty based robot configuration matching algo
rithm
Given a database of configuratiddisfind the corresponding
canonical representation of the datab8se
For new configuration®, compare the canonical represen
tation of E (denoted byE.) with all the elements of..
Store any matches iil..
if M, # ¢ then
Construct®y;, - the set of assembly port matrices fol
all elements ofM, under the action of the respective
automorphism group.
Compared g, to ¢y, to find a match F. € S, for E. % 20 30 a0 Nuégemfmgeles 70 80 90 100
if Match foundthen
Generate the map for the robot fromto F..

Align F. and E and map orientation changes oL, _Fig. 7. Mean_ searqh times forauty based algorithm vs. number of modules
in robot configuration.

0.5

o o I
N w S

Mean Matching times (s)

o
[

to E.
15
For our example problem from Figure 5, given a gait contr
table (Yim 2001) for the canonical form of configuratiéh, @
£10r
—45 —45 60 60 0 15 15 g
—-30 —30 45 45 0 30 30 g
—-15 —15 30 30 0 45 45 il
0 0 15 15 0 60 60 s
5 15 0 0 0 45 45
the mapping found earlier can be used to write a similar g: % \ \ \
. . 0 20 30 40 50 60 70 80 90 100
table fOI’ the nE'W COnﬂguranONL Number of modules

—60 60 15 15 —45 —45

Fig. 8. Standard deviation of search times fmuty based algorithm vs.
—45 45 30 30 -30 —30 number of modules in robot configuration.
-30 30 45 45 —-15 -—15

—-15 15 60 60 O 0
0 0 45 45 15 15 F. Results

From the results in Figure 7, Figure 8 and Figure 9, it
is clear that while the matching time increases with number
of modules, there is considerable variation in matchingeim

The algorithm was implemented using MATLAB and areven for configurations with the same number of modules. The
interface tonauty The database of reference configurationsiatching time is a function of the size of the automorphism
was generated using a combination of known configuratiogsoup for the particular configuration to be matched. This ca
and randomly generated configurations. Configurations witle clearly seen in Figure 10. Here, the matching times for
upto 200 modules were considered. The input to the algorithgonfigurations with 100 modules in each are plotted against
is the port-adjacency matrix for a new configuration and thhe size of the automorphism group for that particular cenfig
output is the port-adjacency matrix for a matching configurarration. It is obvious that the relationship between matghi
tion from the database of known configurations. This is useithe and size of automorphism group is almost linear.
to determine a mapping from the new configuration to the The size of the automorphism group is a reflection of the
matching configuration in the database and thus the mappgywnmetries in the underlying graph structure of the robfot. |
for any gaits generated for that configuration. the number of symmtries in the structure of the robot is high,

In addition to matching random configurations, tests wetbe size of the automorphism group will be higher and the
also performed with specific configurations, specificallpab algorithm needs to check through more permutations of the
configurations that have been constructed and used in guaph to perform the matching. Thus, the algorithm will be
research. Such robot configurations have been construdted wslower for configurations that are very symmetric and fastes
a maximum of 10 modules, however virtual configurations dér asymmetric configurations where the only member of the
the same form were created for testing for the higher numbastomorphism group is the current configuration itself.
of modules. The configurations created included a snake-lik The results also bring out another advantage of using this
serial line configuration, a centipede configuration, a logmarticular method for lower number of modules (100).
configuration and a plane configuration. The canonical forms for the graphs are pre-computed and

OO O OO

E. Implementation
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Number of modules The next approach we consider applies basic concepts from
spectral graph theory as a means for determining configurati
Fig. 9. Mapping times for specific configurations feauty based algorithm isomorphism and label mapping. A known method for check-
vs. number of modules in configuration. ing for isomorphism between two graphs is through adjacency
matrix spectral decomposition (Chung 1997). That is, if two
graphsG; andG; are isomorphic, then the eigenvalues of the
corresponding port adjacency matricés and A, are equal.
The inverse, however, is not always true: adjacency matrice
with identical arrays of eigenvalues are not necessariy is
morphic. To deal with this issue, permutations of eigermect
elements are employed as a confirmation of isomorphism and
as a basis for finding the permutation mapping of module IDs.
The other methods considered in this paper use heuristics to
search for matches between two graphs. This approachdliffer
in its use of well-established ideas in spectral graph thaad
its applicability to generate approximate methods (Zaw$an
2006) where the other techniques may fail.
50000 100000 150000 200000 250000 Cospectral graphssuch as the pair shown in Figure 11
Size of automorphism group (Hogben 2005) are rare and interesting cases that may arise i
modular robotic configurations. The characteristic potprad
Fig. 10. Matching time vs. size of automorphism group fauty based for these graphs are the same despite non-isomorphism. In
algorithm. these scenarios, although the eigenvalues are the same, the
structures are not isomorphic since no relabeling of nodes
maps one configuration to the other. A comparison of the
eigenvectors for these graphs is required to find that permut
stored beforehand. This ability to preprocess the libraeatly tion doesn't exist and confirm non-isomorphism.
reduces the time required for matching since the canonical
forms have to be computed only for the new configuratioh. Linear Algebra of Adjacency and Permutation Matrices
to be matched. The matching then only involves a matrix Given two port-adjacency matricels and A, with the same
comparison followed by a permute and match operation fgraph spectrum, we wish to find tipermutation matrixP that
the isomorphic graphs. However, the method scales badly Witorders the rows and columns 4f so that they are identical
increase in the number of modules in the configurations. 18 those ofA,:
fact, it was often difficult to obtain meaningful data with
configurations of more than 200 modules. Since most hardware Ay = PAP7L. (1)
implementations so far have been less than 100 modules, thi
approach will still be useful for the near term.

Matching times (s)
N w N
o o o

T T
*
I I I

=
o
T
I

Rlote that P swaps the rows an@®~! swaps the columns
of A; so that gaits ford; can be mapped onto corresponding

The other advantage of this method is its ability to deteggits for A;. The permutation matrix is composed of only one
configurations whose port-adjacency matrices may not matthacross any row and column with the remaining entries as
although they are isomorphic. Thus, it can detect kineratiic 0’s. This gives the property that all permutation matrices ar
equivalent configurations where the port numbers corregpomrthogonal, satisfying?” = P~!. The identity matrix is a
ing to connection between a pair of modules in the twpermutation matrix that maps a configuration onto itself.
configurations may not be the same. This is advantageous evelf A; and A, are decomposed into their Jordan canonical
in situations where the robots are put together simply mignuaforms
since it spares the designer the tedious task of specifyiag t A — 1

1= Q1AQ;

correct orientations for each module and modifying thesgait .
accordingly. Az = Q2AQ,



whereA is the diagonal eigenvalue matrix (note that they are

same for both sinced; and A, correspond to isomorphic [—0.47 072 0.72  —0.47 —0.97 032  —0.58
. . . —0.3 .4 —0.4 —0.8 —0. —0.9¢ .
graphs since the rows and columns are just interchanged) and |Zo.0: 006 —o0.66 —o0.04 —0.05 oi1 0.5
Q1 andQ are the associated eigenvector matrices. This give5 ™ [Zoss 6~ "o —oss 009 005 o058
—0.52 —0.38 0.38 0.52 0 0 0
L—0.34 —0.25 0.25 0.34 0 0 0
—1 —1p-—1 _ _ _ 5 _ _
@QAQ; " = PQiAQy P o7 oma Som2 o041 o o8 053
= (PQl)A<PQ1)_1 Qo = :8:2‘11 :8:?1; _0[.)4'11‘) _0%‘14 0%8 0.41:0,111‘ 0,41480.111‘
—0.04 —0.06 0.06 0.04 —0.01 —0.19 + 0.041% —0.19 + 0.041%
—0.52 0.38 0.38 —0.52 0 0 0
Wh|Ch reduces to L—0.53 0 0 0.53 —0.078 0.23 — 0.101% 0.23 — 0.101%
Q2 = PQ;. (2) Note that the columns of); and Q2 (the eigenvectors of

Arr, and Ay) are both ordered so that they correspond to the
This shows that the permutation matrix also relates eiges@me eigenvalue elements. The columns have been normalized

vector elements of adjacency matrices of isomorphic confige that the sum of the squares down any column equals one.
urations. Therefore, by matching appropriate matrix elesie Also, note that the absolute value of each eigenvalue efemen
in Q- to corresponding elements @, we can determine the is of interest, since eigenvectors, as a whole, can be scaled
permutation matrix that satisfies Equation 1. In the follegvi by a minus sign (vector pointing in the opposite direction)
section, we illustrate this procedure with an example. with the eigenvalues and similiarity properties of the mxatr

unchanged. To create the permutation matrix, note ¢haj

(the element in thé'” row and thej*” column of Q) can be

B. Example of Finding the Permutation Matrix Between IsdVritten as:
morphic Configurations
P g Q2ij = PinQu1j + PieQu2j + -+ + PirQ17;.
The property thaf’ has a singld across any column or row

(with all other elements zero) allows us to buitisimply by
comparing the permutation of elements down corresponding

Consider configuratiorrL from Figure 4. Recall that the
port-adjacency matrix corresponding to this configurati®n
given by:

0 00 0 0 7 0] columns in@, and Qs.
000000 7 For instance, we see thiD111| = |Q221] = 0.47. Conse-
000000 1 quently, P,; = 1 with all other elements in the rank and file of
Apr =10 00 0 0 1 0 P5; equal to zero. Next, observe th&;21| = |Q241] = 0.31.
‘ 00000 4 6 This gives usPy;; = 1 with all other elements in the rank
100 7 6 00 and file of P,; equal to0. Similarly, |Q131] = |Q251| = 0.04
0170400 giving Ps3 = 1 with all other elements in the rank and file

- - of Ps3 equal to0. Continuing down the first columns of
Now, consider another configuration with a port-adjacendéyr and @2, we can construct the following’ that confirms

matrix: isomorphism and gives the desired module labels:
0000010 00010 0 0]
00000 70 1000000
000 1 70 4 0000001
Ay =100-7 00 00 P=1{0 100000
0010000 0010000
7100006 0000010
0 060 0 4 0] 0000 1 0 0

First, we note thatdr;_ and A, have the same characteristicThe mapping is given by:
polynomial: (1 9 3 4 5 6 7)
Tl—2 =

Det(Apr. — AT) = Det(As — AT) = A7 — T6A° 4 868)°. 245 1763
_ . . _ Generally, for a columrk, when|Q1;x| = |Q2ik|, Pij =1
This property suggests that these configurations are likédjth all other elements across rawand down columry zero.

candidates for being isomorphic. To confirm this suggestiame relabeled graph is shown in Figure 12.
(and rule out that these structures are cospectral), weepdoc

further to find a permutation matrix that satisfies the prigper i . .
in Equation 2. We first compute the eigenvector matrices wify Graph Symmetry and Configuration Mapping
columns ordered according to the roots of the characteristi It is evident that the choice of eigenvector for comparison
polynomial (eigenvalue graph spectrum): is important. In the above example, if we had chosen any
of the eigenvectors associated with the degenerate eilgenva
A=[787 374 -374 -787 0 0 0 (zero), we would not have been able to build the permutation



3 1 this occurs is because two distinct permutation matriceél bo
6 satisfy Equation 1, namely:
M 0 1 0][0 7 0 010 0 1 0]
2 5 A, |01 0 0|7 0 1 0|01 00
— 2= 11 0 0 offlo 1 0 7[|1 0 0 O
0 0 0 1J0 0 7 0] [0 O O 1]
4 0 0 1 0 01[0 7 0 0][0 0 0 1T
— — oo 1 o0{|7 01 01 00O
~1l0 0 0 1|0 1 0 7/({0 1 0 O
Fig. 12. Relabeling oAy, . 1 0 0 o0 0 7 0f [0 O 1 O]

where P* is the union ofPP; and P, given by:

[0 0 1 0]
et yh !
A D
1 A B C 00 0 1
A4,: C B A D
[0 1 0 0]
Fig. 13. Example of symmetric configuration with two permutatioatrices Py = 0010
that relabel modules in the same way. 0 0 0 1
1 0 0 0

matrix. This redundancy in eigenvalues can be attributexhto  The reason two permutations occur for this configuration
algebraic regularity in the graph structure (Spielman 3996 (and any isomorphic labeling of this graph), is because both

Structural symmetry creates interesting scenarios fa thnatrices are in the graph’s symmetry group. Also called
method to find the graph isomorphism mapping. Consider tRgtomorphic group (as discussed earlier in Section IlI), we

following configurations in Figure 13. see that the symmetry is B0° rotation about the center of
The two rows of labels give the adjacency matrices mass of the system. For the purpose of spectral decompositio
~ - approach, the algorithm tries valid combinations /f type
07 0 0 ; X . A
unions (only onel in all rows and columns) until Equation 1
A, = g (1) (1) g is satisfied. Therefore, this algorithm is slightly faster f
asymmetric systems, as seen in the Figure 16 which shows
0 0 7 0] that the time to map random structures is, on average, less
0 1 0 7] than the time of the more ordered structures (tree, snakeepl
10 7 0 centipede). The general algorithm is presented in Algorith
Az = 07 00 Note thatm is the size of the block redundancy i*; the
70 0 0 shake example above has two blocks of two.

with the following eigensystem: - - - - -
Algorithm 2 Configuration matching using spectral decompo-

A=[-752 —6.52 6.52 7.52] sition.
for ¢ =1 to library max do
—0.48 052 —0.52 0.48 if Det(Agiven — AI) = Det(A; — AI), then
0.52 —048 —0.48 0.52 ComputeqQ ;e and sort (in increasing order of cor-
Q1= —0.52 —0.48 0.48 0.52 responding eigenvalue) to match format(@f.
048  0.52  0.52 0.48 for j=1tondo
0.5 048 048 0.59 Compare the elements of columpsn Qg;ye, With
. —VU. . —VU. Q’L
Qs = —0.52 048 -048 -0.52 Recordw as the column that producesfawith the
0.48 0.52 —0.52 -0.48 minimum number of redundant ones.
—0.48 052 052 —0.48 if Any P satisfiesA; = PAgi,en P71, then
Following the same approach as above, we end up with the RETURN P.
following permutation matrix: else
011 0 ConstructP* using columnw.
01 1 0 for j =1tom do
Pr=1 00 1 if Any P*(j) satisfiesd; = P*(j)AgivenP* (),
100 1 then

RETURN P = P*().

The multiple1’s across the rows and columns occur because
of the redundant elements in the eigenvectors. The reason



D. Complexity of the Spectral Decomposition Method .

Once a characteristic polynomial match is found, the cor

plexity of determining P or P* (the first if-statement in 1
Algorithm 2) is O(n?) since the most computationally ex-

pensive loop in this step is the double loop of matchin
values in eigenvectors corresponding to the same eigenvec
For completely random and asymmetric structures (e.g.,
arm-like robot, a head-to-tail snake, any linear or tr&e-li
structure that is intended for forward and turning motiotyn
this determinesP, and is consequently the expected runnin 5t I
time to find the permutation mapping between isomorph 5
configurations. g’

For structures with at least one line of symmetry, the ma :
if-block determines aP* that has aP embedded within it. e ‘ ‘
Such structures, such as a dog with a head and tail, a he 10 100 200 Numbe?‘)c?f Modules 1000
to-head-tail-to-tail snake (Figure 13), a bipedal walkingot,
etc., delve into the primary else-statement of Algorithnm2 t_ ) )
find the correctP amongst them! choices in P*. For the iFnlgai %:r']dsoenirf:bgrpcesnfﬁgrJ?;tiiﬁ?c"al based algorithm vs. gomtmodules
one-line-of-symmetry structures; = 2, and it is evident that
the complexity to findP in these cases i©(2n). In general,

the complexity to findP is O(m!n). In most casesm is particular, the number of elements of each eigenvectorlequa
small or at most a moderate fractionsfIn the extreme case the number of modules. For large matrices, these normalized
of each module having complete symmetry with respect t9genvectors are composed of small numbers that have accu-
another module (imagine a torus composed of CKBot modulgfulated rounding errors, attributed to the LU-decompositi
with each module having exactly four neighbors),= » and approach (Matlab’s LAPACK matrix algebra package). There
algorithm reduces to the he case of trying all possible labelsare various methods that one can implement to deal with this
for each module. But this case is pathological;is usually issue (i.e., large normalizing factors, matrix balancitby
a fraction of n. For example, a centipede structure with 4or numbers larger than0?, the problem becomes difficult
identical 4-module segments; = 5 (left/right symmetry plus to handle. Additionally, the time to compute eigenvectors
4 segment interchangable symmetries) ane 20. becomes prohibitively large at that scale.

Itis certainly possible to divide the computation of redigci  For highly symmetric structures (loops, planes, tori), the
P* to P amongst parallel processors. We are currently e§utomorphic group is large and the algorithm has a large
ploring a heirarchical architecture where one central @eor set of 1s to sort through to find an appropriate that

Time (sec)

supervises many others. satisfies equation 1. Lastly, a small class of graphs called
strongly regular graphs pose a problem in that they give many
E. Results for Spectral Decomposition Method degenerate eigenvalues, each of which have eigenvecats th

%/e no information as to the permutation of the structure

Figure 14 shows the time to find a match using compariso nielman 1996).

between graph spectra in a library 280 random configu-
rations (for each data point), for up W00 modules. The
Matlab functioneigs(A) was used to find the largest eigen- V. 3DLL APPROACH
values of the sparse matrices. In comparison with Figure 16,The approach presented in Section Il attempts to use the
we see that the time to find the module mapping is motmderlying graph structure of a modular robot to match new
time-consuming. This figure compares the times to find tlwnfigurations to the database. However, it is evident that
permutation matrix between two isomorphic configuratiorthere is more information in our problem that could be used
for up to 50 modules. Snake, centipede, plane, tree and further reduce the search space. In particular, the port-
random structures were tested. The random configuratiastinadjacency matrix stores additional information that can be
also include a negligible matching time to find the corre@asily incorporated into a heuristic approach.
structure in a library of other random structures. Evenlse, t Just as in Section Ill, where unique canonical forms of the
cumulative time to find the mapping is slightly less than theutomorphic group configurations in the library are precom-
other structures. This can be attributed to the fact thatethgouted, this method precomputes and stores a representation
are less symmetries (on average) in random structures &nd that exploits the physical nature of the modular robot cenfig
reduces the number redundant permutation elements that uh&tions to generate nearly unique forms of the automorphic
algorithm must choose from in the method described abowgoups.
For comparison, the brute-foreé time is included for up to  In this method, robots are represented by a 3-dimensional
12 modules. The data point itself is off the scale of the graplinked list of module objects (thus the name 3DLL), each
Some limiting considerations in this approach include nwf which contains a position and orientation in 3-space with
merical stability and structural symmetry of configuraioin respect to arexpansion originmodule. The implementation



A. Library Creation

8.
-=0- Random The first step in this approach is to create a representation o
77| * - Snake any new configuration. To do this, an expansion origin module
oll o g;?}t('epede o . must be selected. The selection process trims the number of
o+ Tree If?>" N e pc_JssubIe expansion origin modules by allqw!n_g only modules
5 5f ; oL f with the degree that has the lowest multiplicity and then by
8 7 R giving priority to modules with the lowest combination ofrpo
o 4 / values (i. e. an origin with connections on ports 1 and 3 takes
F 3l 7 . priority over over an origin with connections on ports 2 and 4
/,' If more than one expansion origin remains after this pragcess
2 v O a module is randomly chosen from this set and designated as
1l // DE the expansion origin. The goal here is to restrict the number
¢ e of possible origin modules as much as possible to limit the
0 [ A : : : amount of time that must be spent comparing configurations.
0 10 20 30 40 50

The next step assigns the origin a default position and
orientation and stores it in a 3-dimensional linked listwNe
modules are added in a depth-first fashion by choosing the
unplaced module connected to the lowest port number of the
most recently-placed module. At each step, the position and
orientation of the next module is determined from the negghb
data, position, and orientation of the current module. Abglo

Number of Modules

Fig. 15. Standard deviation of search times for spectral dasgorithm vs.
number of modules in robot configuration.

5001 . list of modules that have been added is maintained to prevent
| ~%— Random loops from running indefinitely and to end the expansion when
* *- Snake all the modules have been added. This expansion process is
400¢ ! 2 Sg;t;pede deterministic: it will always generate a representatioricivh
: .+ Tree stores the modules in the same order when the choice of origin
3 3007 | - * - Brute Force module is constant.
k) ! . During the expansion process, several metrics are cadclilat
2 | N for later use in comparing configurations. These include the
= 200r ! e center of mass of the system, degree multiplicity, and a port
! y@v"/ ‘ count (the total number of connections on each port). Thé fina
100} ! R4 step determines the comparison origins of the configuration
| .--3":/ . which include only those expansion origin modules with the
e - minimum distance to the center of mass. This minimum
O ook~ ‘ ‘ ‘ ‘ distance is stored for use as another heuristic check.
0 10 20 30 40 50

Number of Modules
B. Matching and Mapping

Fig. 16. Mapping times for specific configurations vs. numbemofiules in Two identical configurations (i.e. configurations having th
configuration. . .
same geometrical shape, but not necessarily same modyle IDs
with the same choice of expansion origin module will have 3-
dimensional linked lists of modules with the same positions
. rientations, and connection presences. Therefore, admgpa
preslgn;ed h?re dusdest Cgb'f gmdules tobmatch dthle haédwr?re,t it representations is just a matter of stepping through the
could be extended 1o Include non-cubic Modules. Each Cqily o isis representing them and checking that thesibates

figuration can have multiple representations based on Whi%tch for each module in the list. The two representatioas ar
expansion origin module is chosen. Expansion origins ale:

distinquished f i o hich bset of Gt the same if any two corresponding modules of the linked
IStinguished frontomparison orginswhich are a Subset ol i 45 not match at any point. Note that this comparison has

the potential expansion origins used as starting pointsnwh% be carried out in turn for each possible choice of origin
comparing configurations module-by-module. Two represep.

. i : . ; odule for one of the configurations until a match has been
tations of the same configuration starting from two dlﬁereqo nd or the set of origin modules is exhausted. Finding a

extp?nsmnl ci.”gmti a:e relqtgd t_)y a ?ogs}an:c transla?on 40 %tch also finds the mapping between the two configurations
rotation refating the two ongins in a global reference 18m g,qq this is a simple assignment of node IDs stored in the

To compare two configurations, several heuristic measutesed lists for the two configurations.
are evaluated first. If these fail to distinguish the two apnfi To compare configurations, first several fast heuristics are
urations, the algorithm proceeds by comparing the postiorevaluated in order of speed. These include graph invariants
orientations, and connection presences of each modulesin like the number of modules in a configuration and multipjicit
configurations, starting from each comparison origin. of degrees of the configuration. Note that because of the



special nature of our robots, the maximum degree is 4. If

two configurations pass this first set of heuristic compasso 4 . 4 L
then the linked list based representations of the two robots E m [l s
are compared starting from the comparison origin modules.
The process of comparison of two configurations is formally =
presented in Algorithm 3. i

Algorithm 3 3DLL configuration matching algorithm for a
new configurationi; and a library representatiafl, ) -
Match = 0 INERIN I KN N IIL‘ —
if numModules(G1) = numModules(Gs) then S T
RETURN L L
R; = buildRepresentation(G1)
R, is loaded from memory.

if portCount®;) != portCount{,) then Fig. 17. Building a linked list based representation for a aladrobot.
RETURN
if degreeMultiplicity(Ry) '= degreeMultiplicity(Rs) . ‘ ‘ ‘ ‘ ‘
then x
RETURN 3.5¢ g
Neo1 = numComparisonOrigins(Ry)
Neoz = numComparisonOrigins(Ra) 3 )
if neo1 1= neoa then 25 |
RETURN g
if distToCenter(neo1) - distToCenter(n.o2) > € then g 2 1
RETURN [= Lsl < |
Match = 1 '
for : =1 to n.,; do I ]
Starting with comparison origifn, step through the mod- .
ules one by one and record the module ID mapping. 05 il
if module positions, orientations, or connection presenc o ‘ ‘ ‘ ‘ ‘
do not match at any poirthen 0 200 ﬁﬁ?n ber of M%%?Jles 800 1000
Match = 0
CONTINUE
else Fig. 18. Mean search times for 3DLL vs. number of modules in robot
BREAK configuration.
RETURN

origins to center of mass. These robot statistics are trivia
compute while the 3D linked list is built, and are then avaia
C. Example for fast comparison between two representations. If any of
e statistics between two representations do not mate, th

. . . .t
We il his method furth h | &J; betwe .
€ illustrate this method further using the example consi e two configurations are not the same (see Algorithm 3).

ered earlier in Section Il using configuratiéh from Figure 4 . . ) -
L . .., Storage space required for representation objects isrlinea

with different module IDs. Module 4 is the only module W|ththe number of modules

degree 4 and is thus chosen as the expansion origin. The next '

module for addition to the linked list is 5, since it is attadh

to port 2 of the origin. Now, module 5 is expanded to obtaif?- Results

in turn, modules 0 and 3. At each step, the relative positionTests were carried out for this approach using exactly

and orientation of each module with respect to the previotlee same procedure as the one used for the previous two

module is determined by the ports that attach the two modul@sproaches in Section Il and Section IV. Results are pteden

together. The expansion process terminates when modules Bere for both sets of tests, i.e. the test for configuratioits w

and 2 have been added, in turn, to the linked list represgntidifferent numbers of modules against a database of known

the configuration. This procedure is shown in Figure 17. configurations (Figure 18 and Figure 19) and the mapping
The end result is the 3D linked list representation of thest for specific robot configurations where they are mapped

robot configuration. This object includes the positions armhto the same configuration with a different set of node IDs

orientations of the modules as well as information used én tiiFigure 20).

heuristics such as the center of mass, number of comparisoiNote that, for all five different configuration types, the

origins, degree multiplicity (i.e., the number of connens scaling is nearly linear and the maximum amount of time is

on port: throughout the robot), and distance of comparisawughly four seconds. The time to search a library of 200



possible comparison origin and therefore it too scales a3.0O(

0.035( : B o
0. Snake In practice, the heuristics filter out the majority of the eon
0_03? % Centipede figurations in the library, and step-by-step module congueri
| =0~ Plane occurs primarily for identical configurations, i.e., theuhistics
w4 Tree . .
0.025f| ..y Loop o o reduce the search space in the library to exactly one. Rurthe
_ |0 Random the number of potential comparison origins (those that must
§ 0.02- have the minimum distance to the center of mass) is nearly
° ﬁ always one or two. These observations explain the relgtivel
-E 0.015 . e ‘,_2; low standard deviation and the linearity of the library test
- f‘Q__ e ; results - the index of the matching configuration in the lijpra
0oLy ’ T SR T is relatively unimportant because the majority of the time
® - o . spent is building the representation of the new configunatio
0.005/; e : )
: and stepping through the modules of the new and matching
0¥ ‘ ‘ ‘ ‘ ‘ configuration.
0 200 400 600 800 1000 This method is able to recognize configurations in an

Number of Modules . . .
amount of time reasonable even for configurations that are

currently physically unrealizable because of the number of
_Fig. 19. Stan_dard (_jeviation of search times for 3DLL vs. nundfenodules modules required_ Further, it does so in a scalable way thank
in robot configuration. to the extra information inherent in the port-adjacencyrirat
Finally, because robot representations are stored in a form
analogous to the actual robot, this method allows the immtus

4 7_«'3 of other robot features, such as different module typesyThe
3.5} ©  Snake e are simply added on as another check in the module-by-
° Centipede module comparisons in Algorithm 3.
3r * Plane s
o5 | O Tree VI. DISCUSSION
8 -+ Loop RS
L, The configuration matching and mapping problem can be
°g’ e presented as a task involving four steps:
T 15 4 1) Match the underlying graph, independent of ports.
| - Lo 2) Match the ports.
P 3) Choose an origin with which to start the mapping
0.5 JRa process.
O,er'@'" ‘ ‘ ‘ ‘ ‘ 4) Generate a module ID mapping between the matched
0 200 400 600 800 1000 configurations.

Number of Modules In the nautybased method Step 3 is not needed as the

canonical form includes the same origin for both the new
Fig. 20. Mapping times for specific configurations using 3Dld. mumber of and matched configuration. The first and last step are fast and
modules in configuration. linear in the number of modules. However Step 2 (match-

ing ports) depends on the number of configurations in the

automorphism group of the underlying structure which can
configurations and generate a mapping is nearly the samesemetimes be very large. As a library becomes larger, the
the amount of time to just generate the mapping. While thgze of the automorphism group can be exponential in the
standard deviation of the library test times is that of thees number of modules in a configuration worst case. As can be
to find the 10th, 20th, ..., 200th configuration in the libraty seen comparing Figure 7 with Figure 18 and Figure 14, the
is still similar to the mapping test standard deviations. nautybased method runs faster for lower numbers of modules

The mapping times for this algorithm are in generah@Q( (<= 50 modules). Some of this speed may be due to the

neo) Wheren,, is the number of comparison origins. Howeverimplementation since the coreuty routines are compiled C
as can be seen from Figure 20, mapping times are in practiether than interpreted matlab code for the other two tests.
nearly O¢). Because of the constraint that origins must have In the 3DLL method steps 1, 2 and 4 occur at the same
the lowest multiplicity of degree, the number of origins isime. Just as symmetries can cause the automorphic group to
constant for the snakes, planes, and centipedes, anddrerebecome large for thrautybased methods, symmetries in con-
the results scale linearly with the number of modules in tHayurations can cause ambiguities in finding an origin totstar
configuration. Similarly, because of the constraint thdt ahe matching process. However, in practice the center ofmas
comparison origins must have the minimum distance to tiheuristic works very well in reducing the candidate origios
center of mass, the loops have only two possible comparisome or two making this method very scalable. It should be
origins. The trees, while having anywhere from 1 to 68oted that this method cannot recognize functionally iidait
modules with lowest multiplicity of degree, have only oneonfigurations - that is, configurations with different mdu



orientations but identical orientations of the axis of tma VIlI. CONCLUSION
for each module. This is because the port count heuristic i

not invariant under functionally similar configurations. the . .

future this could be replaced with a different heuriste.g, a veals the relative advantages and dl_sgdvantages of the thre
count of the number of modules in each functional orientatioapproaCh?S' The spectral decomposition represents the mos
rather than a count of the port connections. mathematically elegant of the three techniques but suffers

: from numerical issues. In addition, calculating the spectr
While both thenautybased method and the spectral de'specially for larger number of modules is a computatignall

composition method are very general and easily applied g

o . ... expensive process. However, this technique works very well
any self-reconfiguring system, the 3DLL method is specific ER the recognition problem, i.e., it can be used to quickly
CKBot and cube oriented modules. N,

identify the configuration in the database. The majority of

In the spectral depomposition method steps 1 and 2 hapeﬁg computational time takes place to find the isomorphism
concurrently and quickly. For the 3rd and 4th steps Symmmmapping

m;heh conf|gurat|or|1. c.arlrlead LO redgndaf|1_tr]¢|genvector e;(:me The traditional graph isomorphism comparison method ben-
which require explicit disambiguation. This process cata ugis trom the ability to create a canonical configurationahi

a very long time. . pares the size of the search space for further matching. In
Both the nautybased and 3DLL approaches essentiallyygition, since it initially compares the underlying gragthuc-

precompute an approximate canonical form for the elementstbre, it can match robot configurations whose port-adjagenc

the library.nautycomputes a canonical form with out the porf,5trices may differ by symmetric rotations of the indivitua
information, while the 3DLL method generates a representas q,les.

tion that is very likely to be unique exploiting the physical The 3DLL method using linked lists uses the extra infor-

properties of configurations. This precomputation saves-co .« inherent in the port-adjacency matrix but suffecstir

putation time with a nominal cost in memory, about half #,¢ eeq to run through every configuration in the library at
megabyte for a 1000-module robot in the 3DLL representatiof)time.

and roughly the same for theautybased method when stored The ideal choice of configuration recognition algorithm

as a sparse array. Th? speptral degomppsition methqd doe%igﬁends on the specific problem being solved. Where func-
precomputation, vv_orkmg directly with adjacency malriees tionally identical configurations must be recognized, aith
was thus easy to implement on embedded controllers. the nautybased approach or a modified 3DLL algorithm
is best. Exact configuration recognition is fastest and most
scalable using 3DLL. Spectral decomposition may be sugtabl
for finding an approximate match to a new configuration.
As a preliminary test, isomorphic gait control using graph the future, we plan to examine extensions to these three
spectra has been implemented on CKbot configurations c@proaches and how best to combine the algorithms to achieve
taining up to 7 modules. A centralized controller contagninhigher recognition speeds. Further, we plan to modify these
42 configurations with corresponding gaits ran a configanati @pproaches to recognize heterogeneous modular robots and
detection scheme using communication architecture destri functionally identical configurations.
in Section 1.
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